Skip to main content
Log in

Stability and absence of binding for multi-polaron systems

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We resolve several longstanding problems concerning the stability and the absence of multi-particle binding for N≥2 polarons. Fröhlich’s 1937 polaron model describes non-relativistic particles interacting with a scalar quantized field with coupling \(\sqrt{\alpha}\), and with each other by Coulomb repulsion of strength U. We prove the following: (i) While there is a known thermodynamic instability for U<2α, stability of matter does hold for U>2α, that is, the ground state energy per particle has a finite limit as N→∞. (ii) There is no binding of any kind if U exceeds a critical value that depends on α but not on N. The same results are shown to hold for the Pekar-Tomasevich model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Alexandrov and J. T. Devreese, Advances in Polaron Physics, Springer, Berlin, 2010.

    Book  Google Scholar 

  2. F. Brosens, S. N. Klimin, and J. T. Devreese, Variational path-integral treatment of a translation invariant many-polaron system, Phys. Rev. B, 71 (2005), 214301–214313.

    Article  Google Scholar 

  3. J. G. Conlon, E. H. Lieb, and H.-T. Yau, The N 7/5 law for charged bosons, Commun. Math. Phys., 116 (1988), 417–448.

    Article  MathSciNet  Google Scholar 

  4. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators. Springer Texts and Monographs in Physics (1987).

    Google Scholar 

  5. J. Dolbeault, A. Laptev, and M. Loss, Lieb-Thirring inequalities with improved constants, J. Eur. Math. Soc. (JEMS), 10 (2008), 1121–1126.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Donsker and S. R. S. Varadhan, Asymptotics for the polaron, Commun. Pure Appl. Math., 36 (1983), 505–528.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. P. Feynman, Slow electrons in a polar crystal, Phys. Rev., 97 (1955), 660–665.

    Article  MATH  Google Scholar 

  8. R. L. Frank, E. H. Lieb, R. Seiringer, and L. E. Thomas, Bi-polaron and N-polaron binding energies, Phys. Rev. Lett., 104 (2010), 210402.

    Article  Google Scholar 

  9. H. Fröhlich, Theory of electrical breakdown in ionic crystals, Proc. R. Soc. Lond. A, 160 (1937), 230–241.

    Article  Google Scholar 

  10. J. Fröhlich, Existence of dressed one-electron states in a class of persistent models, Fortschr. Phys., 22 (1974), 159–198.

    Article  Google Scholar 

  11. G. Gallavotti, J. Ginibre, and G. Velo, Statistical mechanics of the electron-phonon system, Lett. Nuovo Cimento 28B (1970), 274–286.

    Google Scholar 

  12. B. Gerlach and H. Löwen, Absence of phonon-induced localization for the free optical polaron and the corresponding Wannier exciton-phonon system, Phys. Rev. B, 37 (1988), 8042–8047.

    Article  Google Scholar 

  13. B. Gerlach and H. Löwen, Analytical properties of polaron systems or: do polaronic phase transitions exist or not?, Rev. Mod. Phys., 63 (1991), 63–90.

    Article  Google Scholar 

  14. M. Griesemer and J. S. Møller, Bounds on the minimal energy of translation invariant N-polaron systems. Commun. Math. Phys. 297 (2010), 283–297.

    Article  MATH  Google Scholar 

  15. M. Gurari, Self-energy of slow electrons in polar materials, Philos. Mag. Ser. 7, 44 (1953), 329–336.

    MATH  Google Scholar 

  16. M. Hirokawa, Stability of formation of large bipolaron: non-relativistic quantum field theory, preprint (2006), arXiv:cond-mat/0606095.

  17. M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotics behavior of the electron density of atoms and molecules, Phys. Rev. A, 16 (1977), 1782–1785.

    Article  MathSciNet  Google Scholar 

  18. T.-D. Lee and D. Pines, The motion of slow electrons in polar crystals, Phys. Rev., 88 (1952), 960–961.

    Article  Google Scholar 

  19. T.-D. Lee, F. Low, and D. Pines, The motion of slow electrons in a polar crystal, Phys. Rev., 90 (1953), 297–302.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57 (1976/77), 93–105.

    MathSciNet  Google Scholar 

  21. E. H. Lieb and S. Oxford, An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., 19 (1981), 427–439.

    Article  Google Scholar 

  22. E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  23. E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), 127–163.

    Article  MathSciNet  Google Scholar 

  24. E. H. Lieb and W. Thirring, Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., 35 (1975), 687–689. Erratum: ibid., 35 (1975), 1116.

    Article  Google Scholar 

  25. E. H. Lieb and L. E. Thomas, Exact ground state energy of the strong-coupling polaron, Commun. Math. Phys., 183 (1997), 511–519. Erratum: ibid., 188 (1997), 499–500.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. H. Lieb and K. Yamazaki, Ground-state energy and effective mass of the polaron, Phys. Rev., 111 (1958), 728–722.

    Article  MATH  Google Scholar 

  27. S. J. Miyake, Strong coupling limit of the polaron ground state, J. Phys. Soc. Jpn., 38 (1975), 181–182.

    Article  Google Scholar 

  28. T. Miyao and H. Spohn, The bipolaron in the strong coupling limit, Ann. Henri Poincaré, 8 (2007), 1333–1370.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. S. Møller, The polaron revisited, Rev. Math. Phys., 18 (2006), 485–517.

    Article  MathSciNet  Google Scholar 

  30. E. Nelson, Interaction of non-relativistic particles with a quantized scalar field, J. Math. Phys., 5 (1964), 1190–1197.

    Article  Google Scholar 

  31. S. I. Pekar, Research in Electron Theory of Crystals, United States Atomic Energy Commission, Washington, DC, 1963.

  32. S. I. Pekar and O. F. Tomasevich, Theory of F centers, Zh. Eksp. Teor. Fys., 21 (1951), 1218–1222.

    Google Scholar 

  33. G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin-Heidelberg-New York, 1994.

    MATH  Google Scholar 

  34. M. A. Smondyrev and V. M. Fomin, Pekar-Fröhlich bipolarons, in V.D. Lakhno (ed.) Polarons and Applications, Proceedings in Nonlinear Science, Wiley, New York, 1994.

    Google Scholar 

  35. H. Spohn, The polaron functional integral, in Stochastic Processes and Their Applications, Kluwer, Dordrecht-Boston-London, 1990.

    Google Scholar 

  36. M. A. Smondyrev, G. Verbist, F. M. Peeters, and J. T. Devreese, Stability of multi polaron matter, Phys. Rev. B, 47 (1993), 2596–2601.

    Article  Google Scholar 

  37. G. Verbist, F. M. Peeters, and J. T. Devreese, Large bipolarons in two and three dimensions, Phys. Rev. B, 43 (1991), 2712–2720.

    Article  Google Scholar 

  38. G. Verbist, M. A. Smondyrev, F. M. Peeters, and J. T. Devreese, Strong-coupling analysis of large bipolarons in two and three dimensions, Phys. Rev. B, 45 (1992), 5262–5269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank.

About this article

Cite this article

Frank, R.L., Lieb, E.H., Seiringer, R. et al. Stability and absence of binding for multi-polaron systems. Publ.math.IHES 113, 39–67 (2011). https://doi.org/10.1007/s10240-011-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-011-0031-5

Keywords

Navigation