Abstract
Generalizing and unifying prior results, we solve the subconvexity problem for the L-functions of GL 1 and GL 2 automorphic representations over a fixed number field, uniformly in all aspects. A novel feature of the present method is the softness of our arguments; this is largely due to a consistent use of canonically normalized period relations, such as those supplied by the work of Waldspurger and Ichino–Ikeda.
This is a preview of subscription content, access via your institution.
References
J. Arthur, Eisenstein series and the trace formula, in Automorphic Forms, Representations and L -functions, Part 1 (Proc. Sympos. Pure Math., XXXIII, Oregon State Univ., Corvallis, Ore., 1977), pp. 253–274, Am. Math. Soc., Providence, 1979.
J. Arthur, A trace formula for reductive groups. II. Applications of a truncation operator. Compos. Math., 40 (1980), 87–121.
I. N. Bernšteĭn, All reductive \(\protect\mathfrak{p}\)-adic groups are of type I. Funkc. Anal. Prilozh., 8 (1974), 3–6.
J. Bernstein and A. Reznikov, Sobolev norms of automorphic functionals, Int. Math. Res. Not., 40 (2002), 2155–2174.
J. Bernstein and A. Reznikov, Subconvexity bounds for triple L-functions and representation theory, arXiv:math/0608555v1, 2006.
V. Blomer, Rankin-Selberg L-functions on the critical line, Manusc. Math., 117 (2005), 111–133.
V. Blomer and G. Harcos, The spectral decomposition of shifted convolution sums, Duke Math. J., 144 (2008), 321–339.
V. Blomer and G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math., 621 (2008), 53–79.
V. Blomer, G. Harcos, and Ph. Michel, Bounds for modular L-functions in the level aspect, Ann. Sci. École Norm. Supér. (4), 40 (2007), 697–740.
C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory, 65 (1997), 183–196.
N. Burq, P. Gérard, and N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J., 138 (2007), 445–486.
D. A. Burgess, On character sums and L-series. II, Proc. Lond. Math. Soc. (3), 13 (1963), 524–536.
M. Cowling, U. Haagerup, and R. Howe, Almost L 2 matrix coefficients, J. Reine Angew. Math., 387 (1988), 97–110.
L. Clozel, Démonstration de la conjecture τ, Invent. Math., 151 (2003), 297–328.
L. Clozel and E. Ullmo, Équidistribution de mesures algébriques, Compos. Math., 141 (2005), 1255–1309.
A. Diaconu and P. Garrett, Subconvexity bounds for automorphic L-functions for GL(2) over number fields, preprint (2008).
W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math., 112 (1993), 1–8.
W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math., 115 (1994), 219–239.
W. Duke, J. B. Friedlander, and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math., 149 (2002), 489–577.
M. Einsiedler, E. Lindenstrauss, Ph. Michel, and A. Venkatesh, The distribution of periodic torus orbits on homogeneous spaces: Duke’s theorem for cubic fields, Ann. Math., to appear (2007), arXiv:0903.3591.
M. Einsiedler, E. Lindenstrauss, Ph. Michel, and A. Venkatesh, Distribution of periodic torus orbits on homogeneous spaces I, Duke Math. J., 148 (2009), 119–174.
É. Fouvry and H. Iwaniec, A subconvexity bound for Hecke L-functions, Ann. Sci. École Norm. Supér. (4), 34 (2001), 669–683.
J. Friedlander and H. Iwaniec, A mean-value theorem for character sums, Mich. Math. J., 39 (1992), 153–159.
J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, with an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman, Ann. Math. (2), 140 (1994), 161–181.
S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Supér. (4), 11 (1978), 471–542.
S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, in Automorphic forms, representations and L -functions, Part 1 (Proc. Sympos. Pure Math., XXXIII, Oregon State Univ., Corvallis, Ore., 1977), pp. 213–251, Am. Math. Soc., Providence, 1979.
A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278–295.
A. Gorodnik, F. Maucourant, and H. Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. École Norm. Supér. (4), 41 (2008), 383–435.
D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math., 47 (1978), 149–170.
D. R. Heath-Brown, Convexity bounds for L-function, preprint (2008), arXiv:0809.1752.
G. Harcos and Ph. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. II, Invent. Math., 163 (2006), 581–655.
A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J., 145 (2008), 281–307.
A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal., 19 (2010), 1378–1425.
A. Ivić, On sums of Hecke series in short intervals, J. Théor. Nr. Bordx., 13 (2001), 453–468.
H. Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math., 428 (1992), 139–159.
H. Iwaniec, Harmonic analysis in number theory, in Prospects in Mathematics (Princeton, NJ, 1996), pp. 51–68, Am. Math. Soc., Providence, 1999.
H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (2000), Special Volume, pp. 705–741.
H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, vol. 114, Springer, Berlin, 1970.
H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann., 256 (1981), 199–214.
M. Jutila, The twelfth moment of central values of Hecke series, J. Number Theory, 108 (2004), 157–168.
M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta Math., 195 (2005), 61–115.
H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, with appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak, J. Am. Math. Soc., 16 (2003), 139–183.
E. Kowalski, Ph. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J., 114 (2002), 123–191.
N. V. Kuznetsov, Sums of Kloosterman sums and the eighth power moment of the Riemann zeta-function, in Number Theory and Related Topics (Bombay, 1988), Tata Inst. Fund. Res. Stud. Math., vol. 12, pp. 57–117, Tata Inst. Fund. Res., Bombay, 1989.
J. Liu and Y. Ye, Subconvexity for Rankin-Selberg L-functions of Maass forms, Geom. Funct. Anal., 12 (2002), 1296–1323.
H. Y. Loke, Trilinear forms of \(\mathfrak{gl}_{2}\), Pac. J. Math., 197 (2001), 119–144.
W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), in Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., vol. 66, pp. 301–310, Am. Math. Soc., Providence, 1999.
T. Meurman, On the order of the Maass L-function on the critical line, in Number Theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, vol. 51, pp. 325–354, North-Holland, Amsterdam, 1990.
Ph. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points, Ann. Math. (2), 160 (2004), 185–236.
Ph. Michel, Analytic number theory and families of automorphic L-functions, in Automorphic Forms and Applications (Park City, UT, 2002), IAS/Park City Math. Ser., vol. 12, pp. 179–296, Am. Math. Soc., Providence, 2007.
Ph. Michel and A. Venkatesh, Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, in International Congress of Mathematicians, vol. II, pp. 421–457, Eur. Math. Soc., Zürich, 2006.
C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture].
Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in Mathematics, vol. 127, Cambridge University Press, Cambridge, 1997.
Y. Motohashi, A functional equation for the spectral fourth moment of modular Hecke L-functions, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, p. 19, 2003.
W. Müller, The trace class conjecture in the theory of automorphic forms II, Geom. Funct. Anal., 8 (1998), 315–355.
H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133–192.
A. I. Oksak, Trilinear Lorentz invariant forms, Commun. Math. Phys., 29 (1973), 189–217.
D. Prasad, Trilinear forms for representations of GL(2) and local ε-factors, Compos. Math., 75 (1990), 1–46.
A. Reznikov, Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory, preprint, 2004, arXiv:math/0403437v2.
A. Reznikov, Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms, J. Am. Math. Soc., 21 (2008), 439–477.
Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, preprint, 2010.
P. Sarnak, L-functions, in Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), Documenta Mathematica (Extra volume), pp. 453–465.
P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal., 184 (2001), 419–453.
A. Venkatesh, Large sieve inequalities for GL(n)-forms in the conductor aspect, Adv. Math., 200 (2006), 336–356.
A. Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity, Ann. Math., to appear, 2006.
A. Venkatesh, Notes on effective equidistribution, Pisa/CMI summer school 2007, unpublished, 2007.
J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compos. Math., 54 (1985), 173–242.
H. Weyl, Zur abschätzung von ζ(1+it), Math. Z., 10 (1921), 88–101.
D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 415–437.
Author information
Authors and Affiliations
Corresponding author
Additional information
P. Michel was partially supported by the advanced research grant n. 228304 from the European Research Council and the SNF grant 200021-12529.
A. Venkatesh was partially supported by the Sloan foundation, the Packard Foundation and by an NSF grant.
About this article
Cite this article
Michel, P., Venkatesh, A. The subconvexity problem for GL2 . Publ.math.IHES 111, 171–271 (2010). https://doi.org/10.1007/s10240-010-0025-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10240-010-0025-8
Keywords
- Eisenstein Series
- Automorphic Form
- Sobolev Norm
- Automorphic Representation
- Cuspidal Representation