Skip to main content

On the conductor formula of Bloch

Abstract

In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.

This is a preview of subscription content, access via your institution.

References

  1. A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23–111.

  2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.

  3. A. Abbes and T. Saito, Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3–70.

  4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.

  5. A. Blanco, J. Majadas, and A. Rodicio, Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123–140.

  6. S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421–450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987).

  7. T. Chinburg, G. Pappas, and M. Taylor, ε-constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433–446.

  8. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51–93.

  9. P. Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970).

  10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973).

  11. A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201–312.

  12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.

  13. W. Fulton, Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998).

  14. W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985).

  15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964–1967).

  16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973).

  17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971).

  18. R. Hartshorne, Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966).

  19. L. Illusie, Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971).

  20. L. Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271–322.

  21. L. Illusie, Champs toriques et log lissité, preprint (2000).

  22. B. Iversen, Critical points of an algebraic function, Invent. Math. 12 (1971), 210–224.

    Google Scholar 

  23. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191–224.

  24. K. Kato, Class field theory,\(\mathcal{D}\)-modules, and ramification on higher dimensional schemes, preprint, unpublished version.

  25. K. Kato, Toric singularities, Am. J. Math., 116 (1994), 1073–1099.

  26. K. Kato, S. Saito, and T. Saito, Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49–75.

    Google Scholar 

  27. M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89–102.

    Google Scholar 

  28. C. Nakayama, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365–404.

  29. C. Nakayama, Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45–75.

  30. T. Ochiai, l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321–340.

  31. A. Ogg, Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1–21.

    Google Scholar 

  32. M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747–791.

    Google Scholar 

  33. F. Orgogozo, Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739–1754.

  34. D. Quillen, Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968).

  35. D. Quillen, On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65–87. Am. Math. Soc., Providence, R.I.

  36. J.-P. Serre, Corps locaux, 3rd ed., Hermann, Paris (1968).

  37. J.-P. Serre, Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978).

  38. T. Saito, Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151–173.

    Google Scholar 

  39. T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555–578.

  40. T. Saito, Parity in Bloch’s conductor formula in even dimension, to appear in J. Théor. Nombres Bordx.

  41. T. Saito, Weight spectral sequences and independence of ℓ, J. de l’Institut Math. de Jussieu, 2 (2003), 1–52.

    Google Scholar 

  42. C. Weibel, An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuya Kato or Takeshi Saito.

About this article

Cite this article

Kato, K., Saito, T. On the conductor formula of Bloch. Publ. Math., Inst. Hautes Étud. Sci. 100, 5–151 (2004). https://doi.org/10.1007/s10240-004-0026-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-004-0026-6

Keywords

  • Spectral Sequence
  • Cartier Divisor
  • Distinguished Triangle
  • Noetherian Scheme
  • Simple Normal Crossing