Skip to main content
Log in

A journey to vasculopathy in systemic sclerosis: focus on haemostasis and thrombosis

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Systemic sclerosis is a multisystem connective tissue disease, characterized by endothelial autoimmune activation, along with tissue and vascular fibrosis leading to vasculopathy and to a progressive loss of angiogenesis. This condition further deranges the endothelial barrier favouring the opening of the endothelial junctions allowing the vascular leak in the surrounding tissues: this process may induce cell detachment which allows the contact between platelets and collagen present in the exposed subendothelial layer. Platelets first adhere to collagen via glycoprotein VI and then, immediately aggregate because of the release of von Willebrand factor which is a strong activator of platelet aggregation. Activated platelets exert their procoagulant activity, exposing on their membrane phospholipids and phosphatidylserine, enabling the adsorption of clotting factors ready to form thrombin which in turn drives the amplification of the coagulative cascade. An essential role in the activation of blood coagulation is the tissue factor (TF), which triggers blood coagulation. The TF is found abundantly in the subendothelial collagen and is also expressed by fibroblasts providing a haemostatic covering layer ready to activate coagulation when the endothelial injury occurs. The aim of this review is to focus the attention on the underlying mechanisms related to haemostasis and thrombosis pathophysiology which may have a relevant role in SSc as well as on a possible role of anticoagulation in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data are included in the typescript. Inquiries should be directed to the corresponding authors.

References

  1. Volkmann ER, Andréasson K, Smith V. Systemic sclerosis. Lancet. 2023;401:304–18.

    PubMed  Google Scholar 

  2. Schniering J, Maurer B, Distler O. Vascular mechanisms of systemic sclerosis. In: Matucci-Cerinic M, Denton CP, editors. Atlas of Ulcers in Systemic Sclerosis; 2019. pp 27–37.

  3. Zanatta E, Codullo V, Avouac J, Allanore Y. Systemic sclerosis: recent insight in clinical management. Joint Bone Spine. 2020;87:293–9.

    PubMed  Google Scholar 

  4. Hughes M, Herrick AL. Systemic sclerosis. Br J Hosp Med (Lond). 2019;80:530–6.

    PubMed  Google Scholar 

  5. Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–99.

    PubMed  Google Scholar 

  6. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002.

    PubMed  Google Scholar 

  7. Hughes M, Herrick AL, Hudson M. Treatment of vascular complications in systemic sclerosis: What is the best approach to diagnosis and management of renal crisis and digital ulcers? Rheum Dis Clin North Am. 2023;49(2):263–77.

    PubMed  Google Scholar 

  8. Matucci-Cerinic M, Kahaleh B, Wigley FM. Evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013;65:1953–62.

    CAS  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Google Scholar 

  10. Barcellona D, Marongiu F. The hemostatic system 1st Part. J Pediat Neonatal Individual Medi (JPNIM). 2019;9:e090106.

    Google Scholar 

  11. Oshima K, King SI, McMurtry SA, Schmidt EP. Endothelial heparan sulphate proteoglycans in sepsis: the role of the glycocalyx. Semin Thromb Hemost. 2021;47:274–82.

    CAS  PubMed  Google Scholar 

  12. Marcus AJ, Broekman MJ, Drosopoulos JH, et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest. 1997;99:1351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moncada S, Vane JR. The role of prostacyclin in vascular tissue. Fed Proc. 1979;38:66–71.

    CAS  PubMed  Google Scholar 

  14. Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3′, 5′- monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood. 1981;57:946–55.

    CAS  PubMed  Google Scholar 

  15. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2:1057–8.

    CAS  PubMed  Google Scholar 

  16. Pike RN, Buckle AM, le Bonniec BF, Church FC. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J. 2005;272:4842–51.

    CAS  PubMed  Google Scholar 

  17. Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh. 1965;13:516–30.

    CAS  PubMed  Google Scholar 

  18. Croles FN, Borjas-Howard J, Nasserinejad K, Leebeek FWG, Meijer K. Risk of venous thrombosis in antithrombin deficiency: a systematic review and bayesian meta-analysis. Semin Thromb Hemost. 2018;44:315–26.

    CAS  PubMed  Google Scholar 

  19. Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol. 2004;24:1374–83.

    PubMed  Google Scholar 

  20. Dinarvand P, Moser KA. Protein C deficiency. Arch Pathol Lab Med. 2019;143:1281–5.

    CAS  PubMed  Google Scholar 

  21. Warn-Cramer BJ, Almus FE, Rapaport SI. Studies of the factor Xa dependent inhibitor of factor VIIa/tissue factor (extrinsic pathway inhibitor) from cell supernates of cultured human umbilical vein endothelial cells. Thromb Haemost. 1989;61:101–5.

    CAS  PubMed  Google Scholar 

  22. Kooistra T, Schrauwen Y, Arts J, Emeis JJ. Regulation of endothelial cell t-PA synthesis and release. Int J Hematol. 1994;59:233–55.

    CAS  PubMed  Google Scholar 

  23. Houde M, Desbiens L, D’Orléans-Juste P. Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol. 2016;77:143–75.

    CAS  PubMed  Google Scholar 

  24. Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010;14:1241–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Martino ML, Frau A, Losa F, et al. Role of circulating endothelial cells in assessing the severity of systemic sclerosis and predicting its clinical worsening. Sci Rep. 2021;1:2681.

    Google Scholar 

  26. Manon-Jensen T, Kjeld NG, Karsdal MA. Collagen-mediated hemostasis. J Thromb Haemost. 2016;14:438–48.

    CAS  PubMed  Google Scholar 

  27. Theofilis P, Sagris M, Oikonomou E, et al. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 2021;9:781.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu Y, Guo H, Zhang Y, Qiao R. Procoagulant platelets: generation, characteristics, and therapeutic target. J Clin Lab Anal. 2021;35: e23750.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50:326–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost. 2012;10:2242–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fair DS, MacDonald MJ. Cooperative interaction between factor VII and cell surface-expressed tissue factor. J Biol Chem. 1987;262:11692–8.

    CAS  PubMed  Google Scholar 

  32. De Caterina R, Husted S, Wallentin L et al. European Society of Cardiology Working Group on Thrombosis Task Force on Anticoagulants in Heart Disease. General mechanisms of coagulation and targets of anticoagulants (Section I). Position Paper of the ESC Working Group on Thrombosis--Task Force on Anticoagulants in Heart Disease. Thromb Haemost. 2013;109:569–79.

  33. Dempfle CE. The use of soluble fibrin in evaluating the acute and chronic hypercoagulable state. Thromb Haemost. 1999;82:673–83.

    CAS  PubMed  Google Scholar 

  34. Nossel HL, Yudelman I, Canfield RE, Butler VP Jr, Spanondis K, Wilner GD, Qureshi GD. Measurement of fibrinopeptide A in human blood. J Clin Invest. 1974;54:43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Butenas S, van ’t Veer C, Cawthern K, Brummel KE, Mann KG. Models of blood coagulation. Blood Coagul Fibrinolysis. 2000;11(Suppl 1):S9-13.

    CAS  PubMed  Google Scholar 

  36. Bruhn HD, Conard J, Mannucci M, et al. Multicentric evaluation of a new assay for prothrombin fragment F1+2 determination. Thromb Haemost. 1992;68:413–7.

    CAS  PubMed  Google Scholar 

  37. Pelzer H, Schwarz A, Heimburger N. Determination of human thrombin-antithrombin III complex in plasma with an enzyme-linked immunosor[bent assay. Thromb Haemost. 1988;59:101–6.

    CAS  PubMed  Google Scholar 

  38. Matucci Cerinic M, Valentini G, Sorano GG, et al. Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis. Semin Arthritis Rheum. 2003;32:285–95.

    Google Scholar 

  39. Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33:4–15.

    CAS  PubMed  Google Scholar 

  40. Tripodi A. Thrombin generation: a global coagulation procedure to investigate hypo- and hyper-coagulability. Haematologica. 2020;105:2196–9.

    PubMed  PubMed Central  Google Scholar 

  41. Kuszmiersz P, Pacholczak-Madej R, Siwiec A, et al. Thrombin generation potential is enhanced in systemic sclerosis: impact of selected endothelial biomarkers. Clin Exp Rheumatol. 2021;39(Suppl 13):13–9.

    PubMed  Google Scholar 

  42. Bruni C, Frech T, Manetti M, Rossi FW, Furst DE, De Paulis A, et al. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: Should the door be closed? Front Immunol. 2018;7(9):2045.

    Google Scholar 

  43. Martin J, Collot-Teixeira S, McGregor L, McGregor JL. The dialogue between endothelial cells and monocytes/macrophages in vascular syndromes. Curr Pharm Des. 2007;13:1751–9.

    CAS  PubMed  Google Scholar 

  44. Osterud B, Bjorklid E. Tissue factor in blood cells and endothelial cells. Front Biosci (Elite Ed). 2012;4:289–99.

    PubMed  Google Scholar 

  45. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.

    CAS  PubMed  Google Scholar 

  46. Didier K, Giusti D, Le Jan S, et al. Neutrophil Extracellular Traps generation relates with early stage and vascular complications in systemic sclerosis. J Clin Med. 2020;9:2136.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Folco EJ, Mawson TL, Vromman A, et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018;38:1901–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol. 2023;116: 109843.

    CAS  PubMed  Google Scholar 

  49. Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J. 2017;284:1712–25.

    CAS  PubMed  Google Scholar 

  50. Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, Ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci. 2021;22(5):2590.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev. 2021;46: 100733.

    CAS  PubMed  Google Scholar 

  52. Larsen JB, Hvas AM. Thrombin: a pivotal player in hemostasis and beyond. Semin Thromb Hemost. 2021;47(7):759–74.

    CAS  PubMed  Google Scholar 

  53. Yong J, Abrams ST, Wang G, Toh CH. Cell-free histones and the cell-based model of coagulation. J Thromb Haemost. 2023;21:1724–36.

    PubMed  Google Scholar 

  54. Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem. 2001;276:45184–92.

    CAS  PubMed  Google Scholar 

  55. Chambers RC, Scotton CJ. Coagulation cascade proteinases in lung injury and fibrosis. Proc Am Thorac Soc. 2012;9:96–101.

    CAS  PubMed  Google Scholar 

  56. Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133:511–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bachhuber BG, Sarembock IJ, Gimple LW, Owens GK. alpha-Thrombin induces transforming growth factor-beta1 mRNA and protein in cultured vascular smooth muscle cells via a proteolytically activated receptor. J Vasc Res. 1997;34:41–8.

    CAS  PubMed  Google Scholar 

  58. Hernández-Rodríguez NA, Cambrey AD, Harrison NK, et al. Role of thrombin in pulmonary fibrosis. Lancet. 1995;346:1071–3.

    PubMed  Google Scholar 

  59. Ohba T, McDonald JK, Silver RM, Strange C, LeRoy EC, Ludwicka A. Scleroderma bronchoalveolar lavage fluid contains thrombin, a mediator of human lung fibroblast proliferation via induction of platelet-derived growth factor alpha-receptor. Am J Respir Cell Mol Biol. 1994;10:405–12.

    CAS  PubMed  Google Scholar 

  60. Bjornsson J, Edwards WD. Primary pulmonary hypertension: a histopathologic study of 80 cases. Mayo Clin Proc. 1985;60:16–25.

    CAS  PubMed  Google Scholar 

  61. Pietra GG, Edwards WD, Kay JM, et al. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National heart, lung, and blood institute primary pulmonary hypertension registry. Circulation. 1989;80(5):1198–206.

    CAS  PubMed  Google Scholar 

  62. Launay D, Sobanski V, Hachulla E, Humbert M. Pulmonary hypertension in systemic sclerosis: different phenotypes. Eur Respir Rev. 2017;26: 170056.

    PubMed  PubMed Central  Google Scholar 

  63. Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010;69:1809–15.

    PubMed  Google Scholar 

  64. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2015;46:903–75.

    CAS  PubMed  Google Scholar 

  65. Marongiu F, Grandone E, Barcellona D. Pulmonary thrombosis in 2019-nCoV pneumonia? J Thromb Haemost. 2020;18(6):1511–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marongiu F, Mameli A, Grandone E, Barcellona D. Pulmonary thrombosis: a clinical pathological entity distinct from pulmonary embolism? Semin Thromb Hemost. 2019;45:778–83.

    PubMed  Google Scholar 

  67. Furtado S, Dunogué B, Jourdi G, et al. High D-dimer plasma concentration in systemic sclerosis patients: Prevalence and association with vascular complications. J Scleroderma Relat Disord. 2021;6:178–86.

    PubMed  Google Scholar 

  68. Johnson SR, Hakami N, Ahmad Z, Wijeysundera DN. Venous Thromboembolism in Systemic Sclerosis: Prevalence, Risk Factors, and Effect on Survival. J Rheumatol. 2018;45:942–6.

    PubMed  Google Scholar 

  69. Schoenfeld SR, Choi HK, Sayre EC, Aviña-Zubieta JA. Risk of pulmonary embolism and deep venous thrombosis in systemic sclerosis: a general population-based study. Arthritis Care Res (Hoboken). 2016;68:246–53.

    PubMed  Google Scholar 

  70. Chung WS, Lin CL, Sung FC, Hsu WH, Yang WT, Lu CC, Kao CH. Systemic sclerosis increases the risks of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study. Rheumatology (Oxford). 2014;53:1639–45.

    PubMed  Google Scholar 

  71. Ngian GS, Stevens W, Prior D, Gabbay E, Roddy J, Tran A, Minson R, Hill C, Chow K, Sahhar J, Proudman S, Nikpour M. Predictors of mortality in connective tissue disease-associated pulmonary arterial hypertension: a cohort study. Arthritis Res Ther. 2012;14:R213.

    PubMed  PubMed Central  Google Scholar 

  72. Nikpour M, Stevens W, Proudman SM, Buchbinder R, Prior D, Zochling J, Williams T, Gabbay E, Nandurkar H. Should patients with systemic sclerosis-related pulmonary arterial hypertension be anticoagulated? Intern Med J. 2013;43:599–603.

    CAS  PubMed  Google Scholar 

  73. Palazzini M, Manes A, Gotti E, Dardi F, Rinaldi A, Galiè N. Anticoagulant treatment in patients with pulmonary arterial hypertension associated with systemic sclerosis: more shadows than lights. J Scleroderma Relat Disord. 2018;3:39–42.

    PubMed  PubMed Central  Google Scholar 

  74. Calderone A, Stevens W, Prior D, et al. Multicentre randomised placebo-controlled trial of oral anticoagulation with apixaban in systemic sclerosis-related pulmonary arterial hypertension: the SPHInX study protocol. BMJ Open. 2016;6: e011028.

    PubMed  PubMed Central  Google Scholar 

  75. Granger CB, Alexander JH, McMurray JJ, et al. ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.

    CAS  PubMed  Google Scholar 

  76. Koehl JL, Hayes BD, Al-Samkari H, Rosovsky R. A comprehensive evaluation of apixaban in the treatment of venous thromboembolism. Expert Rev Hematol. 2020;13:155–73.

    CAS  PubMed  Google Scholar 

  77. Ghrénassia E, Avouac J, Derk CT, et al. Watermelon stomach in SSc: a EUSTAR case–control study. Rheumatology. 2012;51(Suppl 2):6–7.

    Google Scholar 

  78. Fredenburgh JC, Weitz JI. Factor XI as a target for new anticoagulants. Hamostaseologie. 2021;4:104–10.

    Google Scholar 

  79. Gailani D, Gruber A. Factor XI as a therapeutic target. Arterioscler Thromb Vasc Biol. 2016;36:1316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weitz JI, Harenberg J. New developments in anticoagulants: past, present and future. Thromb Haemost. 2017;117:1283–8.

    PubMed  Google Scholar 

  81. Bentounes NK, Melicine S, Martin AC, Smadja DM, Gendron N. Development of new anticoagulant in 2023: prime time for anti-factor XI and XIa inhibitors. J Med Vasc. 2023;48:69–80.

    PubMed  Google Scholar 

  82. Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. Increased circulating soluble junctional adhesion molecules in systemic sclerosis: association with peripheral microvascular impairment. Life (Basel). 2022;12:1790.

    PubMed  Google Scholar 

Download references

Funding

This research was not funded.

Author information

Authors and Affiliations

Authors

Contributions

All Authors contributed to the review conception and design. Material preparation, data collection and analysis were performed by FM, MFR, SM, and DB. The first draft of the manuscript was written by FM and DB. MMC revised the manuscript. Figures are hand made by FM. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Doris Barcellona.

Ethics declarations

Conflict of interest

The authors state that they have nothing to declare in terms of conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agree to publish the review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marongiu, F., Ruberto, M.F., Marongiu, S. et al. A journey to vasculopathy in systemic sclerosis: focus on haemostasis and thrombosis. Clin Exp Med 23, 4057–4064 (2023). https://doi.org/10.1007/s10238-023-01222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01222-x

Keywords

Navigation