Skip to main content

Advertisement

Log in

Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, Salek-Ardakani S, Kraynov E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7:1–9.

    Google Scholar 

  3. Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7:880–7.

    CAS  PubMed  Google Scholar 

  4. Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex role of regulatory T cells in immunity and aging. Front Immunol. 2020. https://doi.org/10.3389/FIMMU.2020.616949.

    Article  PubMed  Google Scholar 

  5. Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6:123.

    CAS  PubMed  Google Scholar 

  6. Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167:829-842.e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137.

    CAS  PubMed  Google Scholar 

  8. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008. https://doi.org/10.1146/annurev.immunol.26.021607.09033126:677-704.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xing S, Ferrari de Andrade L. NKG2D and MICA/B shedding: a ‘tag game’ between NK cells and malignant cells. Clin Transl Immunol. 2020. https://doi.org/10.1002/CTI2.1230.

    Article  Google Scholar 

  11. Lee JW, Zhang Y, Eoh KJ, et al. The combination of MEK inhibitor with immunomodulatory antibodies targeting programmed death 1 and programmed death ligand 1 results in prolonged survival in Kras/p53-driven lung cancer. J Thorac Oncol. 2019;14:1046–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Deligne C, Milcent B, Josseaume N, Teillaud JL, Sibéril S. Impact of depleting therapeutic monoclonal antibodies on the host adaptive immunity: A bonus or a malus? Front Immunol. 2017;8:1.

    Google Scholar 

  13. Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol. 2018;52:39–52.

    CAS  PubMed  Google Scholar 

  14. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020. https://doi.org/10.3390/CANCERS12030738.

    Article  PubMed  Google Scholar 

  15. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    CAS  PubMed  Google Scholar 

  16. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huehls AM, Coupet TA, Sentman CL. Bispecific T cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290.

    CAS  PubMed  Google Scholar 

  18. Peters C, Brown S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35:225.

    Google Scholar 

  19. Floros T, Tarhini AA. Anticancer cytokines: biology and clinical effects of interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol. 2015;42:539–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Sayes N, Vito A, Mossman K. Tumor heterogeneity: a great barrier in the age of cancer immunotherapy. Cancers (Basel). 2021;13:1–14.

    Google Scholar 

  21. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saeed AFUH, Wang R, Ling S, Wang S. Antibody engineering for pursuing a healthier future. Front Microbiol. 2017;8:495.

    PubMed  PubMed Central  Google Scholar 

  23. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:1–14.

    CAS  Google Scholar 

  24. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    PubMed  Google Scholar 

  25. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014. https://doi.org/10.1146/annurev-med-092012-11280765:185-202.

    Article  PubMed  Google Scholar 

  26. Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18:3831–52.

    CAS  PubMed  Google Scholar 

  27. Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V. Inflammation and cancer. Ann Afr Med. 2019;18:121.

    PubMed  PubMed Central  Google Scholar 

  28. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Targeted Therapy. 2021;6:1–46.

    Google Scholar 

  29. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J Cell Physiol. 2019;234:1313–25.

    CAS  PubMed  Google Scholar 

  30. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89:216–24.

    PubMed  Google Scholar 

  31. He Y-F, Zhang G-M, Wang X-H, Zhang H, Yuan Y, Li D, Feng Z-H. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol. 2004;173:4919–28.

    CAS  PubMed  Google Scholar 

  32. Lubong-Sabado R, Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy. 2010;2:37.

    Google Scholar 

  33. Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Targeted Therapy. 2022;7:1–28.

    Google Scholar 

  34. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nature Rev Cancer. 2007;7:95–106.

    CAS  Google Scholar 

  35. Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiotherapy. 2020;25:422.

    Google Scholar 

  36. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers (Basel). 2020;12:1–21.

    Google Scholar 

  39. Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in regulatory T cells for cancer immunotherapy. Cancers (Basel). 2021;13:1–18.

    Google Scholar 

  40. Ascierto PA, Del Vecchio M, Mackiewicz A, et al. Original research: Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J Immunother Cancer. 2020;8:391.

    Google Scholar 

  41. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    PubMed  PubMed Central  Google Scholar 

  42. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sansom DM. CD28, CTLA-4 and their ligands: Who does what and to whom? Immunology. 2000;101:169.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58.

    CAS  PubMed  Google Scholar 

  45. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Front Immunol. 2018;9:2737.

    PubMed  PubMed Central  Google Scholar 

  46. Chikuma S (2017) CTLA-4, an essential immune-checkpoint for T-Cell activation. In: Curr Top Microbiol Immunol. Springer, pp 99–126

  47. Tarhini A, Lo E, Minor DR. Releasing the brake on the immune system: ipilimumab in melanoma and other tumors. Cancer Biother Radiopharm. 2010;25:601.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021. https://doi.org/10.1146/annurev-pathol-042020-04274116:223-249.

    Article  PubMed  Google Scholar 

  49. Brzostek J, Gascoigne NRJ, Rybakin V. Cell type-specific regulation of immunological synapse dynamics by B7 ligand recognition. Front Immunol. 2016;7:24.

    PubMed  PubMed Central  Google Scholar 

  50. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203–20.

    CAS  PubMed  Google Scholar 

  53. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276:97.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. El Halabi L, Adam J, Gravelle P, et al. Expression of the immune checkpoint regulators LAG-3 and TIM-3 in classical hodgkin lymphoma. Clin Lymphoma Myeloma Leuk. 2021;21:257-266.e3.

    PubMed  Google Scholar 

  55. Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nat Med. 2012;18:1394–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen BJ, Dashnamoorthy R, Galera P, Makarenko V, Chang H, Ghosh S, Evens AM. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma. Oncotarget. 2019;10:2030–40.

    PubMed  PubMed Central  Google Scholar 

  57. Lindsted T, Gad M, Grandal MV, et al. Abstract 5629: Preclinical characterization of Sym023 a human anti-TIM3 antibody with a novel mechanism of action. Cancer Res. 2018;78:5629–5629.

    Google Scholar 

  58. Acharya N, Acharya N, Sabatos-Peyton C, Anderson AC, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8:911.

    Google Scholar 

  59. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Berlin: Springer; 2010. p. 269–78.

    Google Scholar 

  60. Annunziato F, Manetti R, Tomasévic I, Giudizi M, Biagiotti R, Giannò V, Germano P, Mavilia C, Maggi E, Romagnani S. Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production. FASEB J. 1996;10:769–76.

    CAS  PubMed  Google Scholar 

  61. Ascierto PA, Lipson EJ, Dummer R, et al. Nivolumab and relatlimab in patients with advanced melanoma that had progressed on anti-programmed death-1/programmed death ligand 1 therapy: results from the phase I/IIa RELATIVITY-020 trial. J Clin Oncol. 2023. https://doi.org/10.1200/JCO.22.02072.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1.

    CAS  Google Scholar 

  63. Das A, Long EO. Inhibitory receptors in NK cells degranulation, is the preferred target of lytic granule polarization, rather than. J Immunol Ref. 2010;185:4698–704.

    CAS  Google Scholar 

  64. Kohrt H, Rajasekaran N, Chester C, Yonezawa A, Zhao X. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther. 2015;4:91.

    PubMed  PubMed Central  Google Scholar 

  65. Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Segal NH, Infante JR, Sanborn RE, et al. Safety of the natural killer (NK) cell-targeted anti-KIR antibody, lirilumab (liri), in combination with nivolumab (nivo) or ipilimumab (ipi) in two phase 1 studies in advanced refractory solid tumors. Ann Oncol. 2016;27:372.

    Google Scholar 

  67. Liu J, Yuan Y, Chen W, et al Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA https://doi.org/10.1073/pnas.1420370112

  68. ElTanbouly MA, Schaafsma E, Noelle RJ, Lines JL. VISTA: Coming of age as a multi-lineage immune checkpoint. Clin Exp Immunol. 2020;200:120–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hosseinkhani N, Derakhshani A, Shadbad MA, Argentiero A, Racanelli V, Kazemi T, Mokhtarzadeh A, Brunetti O, Silvestris N, Baradaran B. The role of V-domain Ig suppressor of T cell activation (VISTA) in cancer therapy: lessons learned and the road ahead. Front Immunol. 2021. https://doi.org/10.3389/FIMMU.2021.676181.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131:49–57.

    CAS  PubMed  Google Scholar 

  71. Sharma R, Das A. IL-2 mediates NK cell proliferation but not hyperactivity. Immunol Res. 2018;66:151–7.

    CAS  PubMed  Google Scholar 

  72. Qi X, Li F, Wu Y, Cheng C, Han P, Wang J, Yang X. Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun. 2019;10:1–11.

    Google Scholar 

  73. Stärck L, Scholz C, Dörken B, Daniel PT. Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIP(short) via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur J Immunol. 2005;35:1257–66.

    PubMed  Google Scholar 

  74. Deng J, Zhao S, Zhang X, Jia K, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther. 2019;12:7347.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu Y, Chen P, Wang H, Wu S, Zhao S, He Y, Zhou C, Hirsch FR. The landscape of immune checkpoints expression in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10:1029–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. He Y, Zhang X, Jia K, Dziadziuszko R, Zhao S, Deng J, Wang H, Hirsch FR, Zhou C. OX40 and OX40L protein expression of tumor infiltrating lymphocytes in non-small cell lung cancer and its role in clinical outcome and relationships with other immune biomarkers. Transl Lung Cancer Res. 2019;8:352.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui D, Lv Y, Yuan X, et al. Increased expressions of OX40 and OX40 ligand in patients with primary immune thrombocytopenia. J Immunol Res. 2019. https://doi.org/10.1155/2019/6804806.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Webb GJ, Hirschfield GM, Lane PJL. OX40, OX40L and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol. 2016;50:312–32.

    CAS  PubMed  Google Scholar 

  79. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66.

    CAS  PubMed  Google Scholar 

  80. Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G, Riccardi C. Glucocorticoid-Induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res. 2015. https://doi.org/10.1155/2015/171520.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C. GITR/GITRL: More than an effector T cell co-stimulatory system. Eur J Immunol. 2007;37:1165–9.

    CAS  PubMed  Google Scholar 

  82. Zappasodi R, Sirard C, Li Y, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25:759–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lassman ME, Chappell DL, Mcavoy T, Cheng A, De Alwis DP, Pruitt SK, Laterza OF, Li C, Stoch A, Mayawala K. Experimental Medicine Study to Measure Immune Checkpoint Receptors PD-1 and GITR Turnover Rates In Vivo in Humans. CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME; 2021. https://doi.org/10.1002/cpt.2129

  84. Davar D, Zappasodi R, Wang H, et al. Phase IB study of GITR agonist antibody TRX518 singly and in combination with gemcitabine, pembrolizumab, or nivolumab in patients with advanced solid tumors. Clin Cancer Res. 2022;28:3990.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang TT, Cheng X, Truong B, Sun LZ, Yang XF, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther. 2021;219: 107709.

    CAS  PubMed  Google Scholar 

  86. Pullen SS, Dang TTA, Crute JJ, Kehry MR. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem. 1999;274:14246–54.

    CAS  PubMed  Google Scholar 

  87. Kawabe T, Matsushima M, Hashimoto N, Imaizumi K, Hasegawa Y. CD40/CD40 ligand interactions in immune responses and pulmonary immunity. Nagoya J Med Sci. 2011;73:69.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018. https://doi.org/10.1186/s13045-018-0582-8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lewis TS, Mccormick RS, Emmerton K, Lau JT, Yu S-F, Mcearchern JA, Grewal IS. Law C-L cancer therapy: preclinical distinct apoptotic signaling characteristics of the anti-CD40 monoclonal antibody dacetuzumab and rituximab produce enhanced antitumor activity in non-hodgkin lymphoma. Clin Cancer Res. 2011. https://doi.org/10.1158/1078-0432.CCR-11-0479.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Antonioli L, Blandizzi C, Malavasi F, Ferrari D, Haskó G. Anti-CD73 immunotherapy: a viable way to reprogram the tumor microenvironment. Oncoimmunology. 2016;5: e1216292.

    PubMed  PubMed Central  Google Scholar 

  91. Zheng W, Zhu Y, Chen X, Zhao J. CD73 expression in myeloid-derived suppressor cells is correlated with clinical stages in head and neck squamous cell carcinomas. Ann Transl Med. 2021;9:1148–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol. 2016;7:109.

    PubMed  PubMed Central  Google Scholar 

  93. Bono MR, Fernández D, Flores-Santibáñez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression. FEBS Lett. 2015;589:3454–60.

    CAS  PubMed  Google Scholar 

  94. Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP production fuels cancer drug resistance and metastasis: implications for mitochondrial ATP depletion therapy. Front Oncol. 2021;11: 740720.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ, Darcy PK. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A. 2013;110:14711–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Harvey JB, Phan LH, Villarreal OE, Bowser JL. CD73’s potential as an immunotherapy target in gastrointestinal cancers. Front Immunol. 2020;11:508.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee DH. Update of early phase clinical trials in cancer immunotherapy. BMB Rep. 2021;54:70.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open. 2020;4:629.

    Google Scholar 

  99. Han X, Vesely MD. Stimulating T cells against cancer with agonist immunostimulatory monoclonal antibodies. Int Rev Cell Mol Biol. 2019;342:1–25.

    CAS  PubMed  Google Scholar 

  100. Burris HA, Infante JR, Ansell SM, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol. 2017;35:2028–36.

    CAS  PubMed  Google Scholar 

  101. Creelan BC, Antonia SJ. The NKG2A immune checkpoint—a new direction in cancer immunotherapy. Nat Rev Clin Oncol. 2019;16:277–8.

    CAS  PubMed  Google Scholar 

  102. Le Dréan E, Dréan D, Fréd FF, et al Inhibition of antigen‐induced T cell response and antibody‐induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP‐1 and SHP‐2 protein‐tyrosine. Wiley Online Library. https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<264::AID-IMMU264>3.0.CO;2-O

  103. André P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175:1731.

    PubMed  PubMed Central  Google Scholar 

  104. Kindt N, Journe F, Laurent G, Saussez S. Involvement of macrophage migration inhibitory factor in cancer and novel therapeutic targets. Oncol Lett. 2016;12:2247.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Calandra T, Bucala R (2017) Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Critic Rev Trade; Immunol 37:359–370

  106. Mahalingam D, Patel MR, Sachdev JC, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br J Clin Pharmacol. 2020;86:1836.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Su Y, Wang Y, Zhou Y, Zhu Z, Zhang Q, Zhang X, Wang W, Gu X, Guo A, Wang Y. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget. 2017;8:2719–30.

    PubMed  Google Scholar 

  108. Wang-Gillam A, O’Reilly EM, Bendell JC, et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J Clinic Oncol. 2019; 37:TPS465–TPS465

  109. Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer. 2016;2:95–109.

    PubMed  PubMed Central  Google Scholar 

  110. Shaw AT, Lee S-H, Ramalingam SS, et al. Avelumab (anti–PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: Phase 1b results from JAVELIN Lung 101. 2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.9008 36:9008–9008

  111. Kim D-W, Gadgeel SM, Gettinger SN, et al. Safety and clinical activity results from a phase Ib study of alectinib plus atezolizumab in ALK+ advanced NSCLC (aNSCLC). 2018; 36:9009–9009. https://doi.org/10.1200/JCO.2018.36.15_suppl.9009

  112. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19:1035.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cassier PA, Italiano A, Gomez-Roca CA, et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 2015;16:949–56.

    CAS  PubMed  Google Scholar 

  114. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. He M, Chai Y, Qi J, et al. Remarkably similar CTLA-4 binding properties of therapeutic ipilimumab and tremelimumab antibodies. Oncotarget. 2017;8:67129–39.

    PubMed  PubMed Central  Google Scholar 

  116. Tridente G. Alemtuzumab. Adv Events Biomed. 2014; 81.

  117. Havrdova E, Horakova D, Kovarova I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord. 2015;8:31.

    PubMed  PubMed Central  Google Scholar 

  118. Freedman MS, Kaplan JM, Markovic-Plese S. Insights into the mechanisms of the therapeutic efficacy of alemtuzumab in multiple sclerosis. J Clin Cell Immunol. 2013;4:152.

    Google Scholar 

  119. Fda, Cder. HIGHLIGHTS OF PRESCRIBING INFORMATION FULL PRESCRIBING INFORMATION: CONTENTS* 1 INDICATIONS AND USAGE 1.1 Locally Advanced or Metastatic Urothelial Carcinoma 1.2 Metastatic Non-Small Cell Lung Cancer 2 DOSAGE AND ADMINISTRATION 2.1 Recommended Dosing 2.2 Dose Modifications 2.3 Preparation and Administration 3 DOSAGE FORMS AND STRENGTHS 4 CONTRAINDICATIONS 5 WARNINGS AND PRECAUTIONS. 2016.

  120. Weinstock C, Khozin S, Suzman D, Zhang L, Tang S, Wahby S, Goldberg KB, Kim G, Pazdur R. U.S. food and drug administration approval summary: atezolizumab for metastatic non-small cell lung cancer. Clin Cancer Res. 2017;23:4534–9.

    CAS  PubMed  Google Scholar 

  121. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–301.

    CAS  PubMed  Google Scholar 

  123. West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:924–37.

    CAS  PubMed  Google Scholar 

  124. Horn L, Mansfield AS, Szczęsna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379:2220–9.

    CAS  PubMed  Google Scholar 

  125. Pillai RN, Ramalingam SS, Carbone DP, Paz-Ares LG, Thayu M, Watson P, Khokhar NZ, Reck M. Randomized, open-label phase Ib/II study of atezolizumab with or without daratumumab in previously treated advanced or metastatic non-small cell lung cancer (NSCLC). J Clinic Oncol. 2017;35:TPS9102.

    Google Scholar 

  126. Malhotra J, Lin Y, Gonzales A, Patel M, Chan N, Aisner J, Jabbour S. FP03.02 A phase I trial of atezolizumab and varlilumab in combination with radiation in patients with metastatic non-small cell lung cancer. J Thorac Oncol. 2021;16:948.

    Google Scholar 

  127. Mathieu L, Shah S, Pai-Scherf L, et al. FDA approval summary: atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer. Oncologist. 2021;26:433–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Infante JR, Hansen AR, Pishvaian MJ, et al. A phase Ib dose escalation study of the OX40 agonist MOXR0916 and the PD-L1 inhibitor atezolizumab in patients with advanced solid tumors. 2016. https://doi.org/10.1200/JCO.2016.34.15_suppl.101; 34:101–101

  129. Disis ML, Taylor MH, Kelly K, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 2019;5:393–401.

    PubMed  PubMed Central  Google Scholar 

  130. Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodriguez-Vida A, Bellmunt J. Avelumab for the treatment of urothelial cancer. Expert Rev Anticancer Ther. 2018;18:421–9.

    CAS  PubMed  Google Scholar 

  132. Chin K, Chand VK, Nuyten DSA. Avelumab: clinical trial innovation and collaboration to advance anti-PD-L1 immunotherapy. Ann Oncol. 2017;28:1658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Juliá EP, Amante A, Pampena MB, Mordoh J, Levy EM. Avelumab, an IgG1 anti-PD-L1 immune checkpoint inhibitor, triggers NK cell-mediated cytotoxicity and cytokine production against triple negative breast cancer cells. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02140.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6: e1358335.

    PubMed  PubMed Central  Google Scholar 

  135. Cesco-Gaspere M, Morris E, Stauss HJ. Immunomodulation in the treatment of haematological malignancies. Clin Exp Med. 2009;9:81–92.

    CAS  PubMed  Google Scholar 

  136. Fang W, Yang Y, Ma Y, et al. Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials. Lancet Oncol. 2018;19:1338–50.

    CAS  PubMed  Google Scholar 

  137. Ciociola T, Magliani W, Giovati L, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as an unlimited source of anti-infective, anti-tumour and immunomodulatory peptides. Sci Prog. 2014;97:215–33.

    PubMed  PubMed Central  Google Scholar 

  138. Ahmed SR, Petersen E, Patel R, Migden MR. Cemiplimab-rwlc as first and only treatment for advanced cutaneous squamous cell carcinoma. Expert Rev Clin Pharmacol. 2019;12:947–51.

    CAS  PubMed  Google Scholar 

  139. Migden MR, Rischin D, Schmults CD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379:341–51.

    CAS  PubMed  Google Scholar 

  140. Saltarella I, Desantis V, Melaccio A, Solimando AG, Lamanuzzi A, Ria R, Storlazzi CT, Mariggiò MA, Vacca A, Frassanito MA. Mechanisms of resistance to anti-CD38 Daratumumab in multiple myeloma. Cells. 2020;9:167.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Frerichs KA, Verkleij CPM, Dimopoulos MA, Marin Soto JA, Zweegman S, Young MH, Newhall KJ, Mutis T, van de Donk NWCJ. Efficacy and safety of durvalumab combined with daratumumab in daratumumab-refractory multiple myeloma patients. Cancers (Basel). 2021. https://doi.org/10.3390/CANCERS13102452.

    Article  PubMed  Google Scholar 

  142. Faiena I, Cummings AL, Crosetti AM, Pantuck AJ, Chamie K, Drakaki A. Durvalumab: an investigational anti-PD-L1 monoclonal antibody for the treatment of urothelial carcinoma. Drug Des Devel Ther. 2018;12:209–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee J-M, Cimino-Mathews A, Peer CJ, et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1–3 inhibitor cediranib in women’s cancers: a dose-escalation, phase i study. J Clin Oncol. 2017;35:2193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31:1855–68.

    CAS  PubMed  Google Scholar 

  145. Mahalingam D, Patel M, Sachdev J, et al. PD-011 Safety and efficacy analysis of imalumab, an anti-oxidized macrophage migration inhibitory factor (oxMIF) antibody, alone or in combination with 5-fluorouracil/leucovorin (5-FU/LV) or panitumumab, in patients with metastatic colorectal cancer (mCRC). Ann Oncol. (2016) 27:ii105.

  146. Letendre P, Monga V, Milhem M, Zakharia Y. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol. 2017;13:625–36.

    CAS  PubMed  Google Scholar 

  147. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 2011;17:6958–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fda HIGHLIGHTS OF PRESCRIBING INFORMATION.

  150. Choueiri TK, Fishman MN, Escudier B, et al. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin Cancer Res. 2016;22:5461–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hume DA, MacDonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119:1810–20.

    CAS  PubMed  Google Scholar 

  152. Wang-Gillam A, O’Reilly EM, Bendell JC, et al (2019) A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). https://doi.org/10.1200/JCO.2019.37.4_suppl.TPS465 37:TPS465

  153. O’Hara MH, O’Reilly EM, Varadhachary G, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 2021;22:118–31.

    PubMed  Google Scholar 

  154. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther. 2017;34:324–56.

    CAS  PubMed  Google Scholar 

  156. Hafeez U, Gan HK, Scott AM. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 2018;41:114–21.

    CAS  PubMed  Google Scholar 

  157. Larkins E, Blumenthal GM, Yuan W, et al. FDA approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist. 2017;22:873.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sanlorenzo M, Vujic I, Daud A, Algazi A, Gubens M, Luna SA, Lin K, Quaglino P, Rappersberger K, Ortiz-Urda S. Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol. 2015;151:1206.

    PubMed  PubMed Central  Google Scholar 

  159. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    CAS  PubMed  Google Scholar 

  160. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17:1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mezquita L, Planchard D. Durvalumab for the treatment of non-small cell lung cancer. Expert Rev Respir Med. 2018;12:627–39.

    CAS  PubMed  Google Scholar 

  162. Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012;22:3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:1–18.

    Google Scholar 

  164. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Xin YuJ, Hubbard-Lucey VM, Tang J. Immuno-oncology drug development goes global. Nat Rev Drug Discov. 2019;18:899–900.

    Google Scholar 

  166. Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015. https://doi.org/10.1186/S12916-015-0278-7.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang W, He Y, He W, et al. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2021. https://doi.org/10.3389/FIMMU.2020.622509/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sadeghi Rad H, Monkman J, Warkiani ME, Ladwa R, O’Byrne K, Rezaei N, Kulasinghe A. Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev. 2021;41:1474.

    PubMed  Google Scholar 

  172. Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics. 2020;10:3099.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo S, Deng CX. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 2018;14:2083.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim CW, Do KK, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep. 2021;54:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol. 2020;11:784.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020;8: 502919.

    Google Scholar 

  177. Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: modulation of tumor microenvironment by Toll-like receptor ligands. Bioimpacts. 2022;12:261.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and combination strategies for immuno-oncology. Int J Molecular Sci. 2020;21:5009.

    CAS  Google Scholar 

  179. Bai R, Chen N, Li L, Du N, Bai L, Lv Z, Tian H, Cui J. Mechanisms of cancer resistance to immunotherapy. Front Oncol. 2020;10:1290.

    PubMed  PubMed Central  Google Scholar 

  180. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25.

    CAS  PubMed  Google Scholar 

  182. Qiao M, Jiang T, Liu X, et al. Immune checkpoint inhibitors in EGFR-Mutated NSCLC: Dusk or dawn? J Thorac Oncol. 2021;16:1267–88.

    CAS  PubMed  Google Scholar 

  183. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive and acquired resistance to cancer immunotherapy. Cell. 2017;168:707.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Damgaci S, Ibrahim-Hashim A, Enriquez-Navas PM, Pilon-Thomas S, Guvenis A, Gillies RJ. Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology. 2018;154:354.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R, Tocchetti CG, Lyon AR, Padera RF, Johnson DB, Moslehi J. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res. 2019;115:854.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ball S, Ghosh RK, Wongsaengsak S, Bandyopadhyay D, Ghosh GC, Aronow WS, Fonarow GC, Lenihan DJ, Bhatt DL. Cardiovascular toxicities of immune checkpoint inhibitors: JACC review topic of the week. J Am Coll Cardiol. 2019;74:1714–27.

    CAS  PubMed  Google Scholar 

  187. Zotova L. Immune checkpoint inhibitors-related myocarditis: a review of reported clinical cases. Diagnostics. 2023. https://doi.org/10.3390/DIAGNOSTICS13071243.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shalata W, Abu-salman A, Steckbeck R, Jacob BM, Massalha I, Yakobson A. Cardiac toxicity associated with immune checkpoint inhibitors: a systematic review. Cancers (Basel). 2021. https://doi.org/10.3390/CANCERS13205218.

    Article  PubMed  Google Scholar 

  189. Lemiale V, Meert AP, Vincent F, Darmon M, Bauer PR, Van de Louw A, Azoulay E. Severe toxicity from checkpoint protein inhibitors: What intensive care physicians need to know? Ann Intensive Care. 2019;9:1–16.

    CAS  Google Scholar 

  190. Geisler AN, Phillips GS, Barrios DM, Wu J, Leung DYM, Moy AP, Kern JA, Lacouture ME. Immune checkpoint inhibitor—related dermatologic adverse events. J Am Acad Dermatol. 2020;83:1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ellis SR, Vierra AT, Millsop JW, Lacouture ME, Kiuru M. Dermatologic toxicities to immune checkpoint inhibitor therapy: a review of histopathologic features. J Am Acad Dermatol. 2020;83:1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Habre M, Habre SB, Kourie HR. Dermatologic adverse events of checkpoint inhibitors: What an oncologist should know. Immunotherapy. 2016;8:1437–46.

    CAS  PubMed  Google Scholar 

  193. Hattersley R, Nana M, Lansdown AJ. Endocrine complications of immunotherapies: a review. Clin Med. 2021;21: e212.

    Google Scholar 

  194. Tsoli M, Kaltsas G, Angelousi A, Alexandraki K, Randeva H, Kassi E. Managing ipilimumab-induced hypophysitis: challenges and current therapeutic strategies. Cancer Manag Res. 2020;12:9551.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Patel A, Abid H, Kumar A, Patel A, Abid H, Kumar A. The endocrinological side effects of immunotherapies. Adv Precis Med Oncol. 2021. https://doi.org/10.5772/INTECHOPEN.96491.

    Article  Google Scholar 

  196. Cukier P, Santini FC, Scaranti M, Hoff AO. Endocrine side effects of cancer immunotherapy. Endocr Relat Cancer. 2017;24:T331–47.

    CAS  PubMed  Google Scholar 

  197. Shivaji UN, Jeffery L, Gui X, Smith SCL, Ahmad OF, Akbar A, Ghosh S, Iacucci M. Immune checkpoint inhibitor-associated gastrointestinal and hepatic adverse events and their management. Therap Adv Gastroenterol. 2019. https://doi.org/10.1177/1756284819884196.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Dahiya DS, Wani F, Guidi JC, Kichloo A. Gastrointestinal adverse effects of immunotherapeutic agents: a systematic review. Gastroenterology Res. 2020;13:227.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Tang L, Wang J, Lin N, Zhou Y, He W, Liu J, Ma X. Immune checkpoint inhibitor-associated colitis: from mechanism to management. Front Immunol. 2021. https://doi.org/10.3389/FIMMU.2021.800879.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Haugh AM, Probasco JC, Johnson DB. Neurologic complications of immune checkpoint inhibitors. Expert Opin Drug Saf. 2020;19:479.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen X, Haggiagi A, Tzatha E, DeAngelis LM, Santomasso B. Electrophysiological findings in immune checkpoint inhibitor-related peripheral neuropathy. Clin Neurophysiol. 2019;130:1440–5.

    PubMed  PubMed Central  Google Scholar 

  202. Roth P, Winklhofer S, Müller AMS, Dummer R, Mair MJ, Gramatzki D, Le Rhun E, Manz MG, Weller M, Preusser M. Neurological complications of cancer immunotherapy. Cancer Treat Rev. 2021;97: 102189.

    CAS  PubMed  Google Scholar 

  203. Bala-Hampton E, Bazzell F, Dains E. Clinical management of pneumonitis in patients receiving anti–PD-1/PD-L1 therapy. J Adv Pract Oncol. 2018;9:422.

    PubMed  PubMed Central  Google Scholar 

  204. Zhong L, Altan M, Shannon VR, Sheshadri A. Immune-related adverse events: pneumonitis. Immunotherapy. 2020;1244:255.

    CAS  Google Scholar 

  205. Porcu M, De Silva P, Solinas C, et al. Immunotherapy associated pulmonary toxicity: biology behind clinical and radiological features. Cancers (Basel). 2019;11:305.

    CAS  PubMed  Google Scholar 

  206. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80.

    CAS  PubMed  Google Scholar 

  207. Tian XM, Xiang B, Jin LM, et al. Immune-related gene signature associates with immune landscape and predicts prognosis accurately in patients with Wilms tumour. Front Immunol. 2022. https://doi.org/10.3389/FIMMU.2022.920666/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Li N, Wang J, Zhan X. Identification of immune-related gene signatures in lung adenocarcinoma and lung squamous cell carcinoma. Front Immunol. 2021. https://doi.org/10.3389/FIMMU.2021.752643/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  209. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.

    CAS  PubMed  Google Scholar 

  210. Kiyotani K, Chan HT, Nakamura Y. Immunopharmacogenomics towards personalized cancer immunotherapy targeting neoantigens. Cancer Sci. 2018;109:542–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a Milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19:133.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gajewski TF. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol. 2015;42:663–71.

    PubMed  PubMed Central  Google Scholar 

  214. Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in breast cancer: Where are we and where are we going? Adv Clin Chem. 2015;71:1–23.

    CAS  PubMed  Google Scholar 

  215. Mora J, Mertens C, Meier JK, Fuhrmann DC, Brüne B, Jung M. Strategies to interfere with tumor metabolism through the interplay of innate and adaptive immunity. Cells. 2019;8:445.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Kouidhi S, Ben AF, Elgaaied AB. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00353.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.

    PubMed  PubMed Central  Google Scholar 

  218. Lazzari C, Karachaliou N. Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: Is this the beginning of the end for cancer? Sage J. 2018. https://doi.org/10.1177/1758835918762094.

    Article  Google Scholar 

Download references

Acknowledgements

It is with gratitude that the authors affirm the assistance of Delhi Technological University for the completion of this study. In addition, the authors want to acknowledge the JRF scholarship provided by the University Grant Commission to Ms. Ritu.

Funding

The authors express their gratitude for the support and assistance provided by Delhi Technological University in facilitating the completion of this study. Furthermore, the authors would like to acknowledge the University Grant Commission for granting the JRF scholarship to Ms. Ritu.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and conceived by all authors. Data analysis and paper writing were done by Ms. Ritu. Each author made revisions to the manuscript. It is understood that all authors have reviewed the final manuscript version and agree to be held accountable for its content.

Corresponding author

Correspondence to Asmita Das.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted at the Department of Biotechnology at Delhi-Technological-University- (India). This is an observational study. According to Delhi Technological University's ethical guidelines, this study does not involve any humans or animals, so it does not require ethical approval. The ethical guidelines of Delhi Technological University were followed under the supervision of Dr. Asmita Das and Dr. Prakash Chandra.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritu, Chandra, P. & Das, A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 23, 4297–4322 (2023). https://doi.org/10.1007/s10238-023-01201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01201-2

Keywords

Navigation