Skip to main content

Advertisement

Log in

Role of long pentraxin PTX3 in cancer

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIg. 1
Fig. 2

Similar content being viewed by others

Data availability

Data availability does not apply to this article, as no new data were created or analyzed in this review.

Code availability

Data availability does not apply to this article, as no codes were created in this review.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    PubMed  Google Scholar 

  2. Breviario F, d’Aniello EM, Golay J, Peri G, Bottazzi B, Bairoch A, Saccone S, Marzella R, Predazzi V, Rocchi M. Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component. J Biol Chem. 1992;267(31):22190–7.

    CAS  PubMed  Google Scholar 

  3. Hsiao YW, Chi JY, Li CF, et al. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med. 2022;12(1):e724.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Altmeyer A, Klampfer L, Goodman AR, Vilcek J. Promoter structure and transcriptional activation of the murine TSG-14 gene encoding a tumor necrosis factor/interleukin-1-inducible pentraxin protein. J Biol Chem. 1995;270(43):25584–90.

    CAS  PubMed  Google Scholar 

  5. Ahmmed B, Kampo S, Khan M, et al. Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-κB- and HIF-1α-mediated downregulation of PTX3. J Cell Physiol. 2019;234(7):10680–97.

    CAS  PubMed  Google Scholar 

  6. Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiol Rev. 2018;98(2):623–39.

    CAS  PubMed  Google Scholar 

  7. Basile A, Sica A, D’aniello E, et al. Characterization of the promoter for the human long pentraxin PTX3. J Biol Chem. 1997;272(13):8172–8.

    CAS  PubMed  Google Scholar 

  8. Rubino M, Kunderfranco P, Basso G, et al. Epigenetic regulation of the extrinsic oncosuppressor PTX3 gene in inflammation and cancer. Oncoimmunology. 2017;6(7):e1333215.

    PubMed  PubMed Central  Google Scholar 

  9. Cunha C, Aversa F, Lacerda JF, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–32.

    CAS  PubMed  Google Scholar 

  10. Sun YH, Chou YH, Wang CH, et al. Impact of pentraxin 3 genetic variants on uterine cervical cancer clinicopathologic characteristics. Int J Med Sci. 2021;18(11):2339–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang T, Dai Y, Zeng Q, et al. Pentraxin-3 polymorphisms and pulmonary fungal disease in non-neutropenic patients. Ann Transl Med. 2020;8(18):1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeh CM, Lin CW, Chuang CY, et al. Functional genetic variant of long pentraxin 3 gene is associated with clinical aspects of oral cancer in male patients. Front Oncol. 2019;9:581.

    PubMed  PubMed Central  Google Scholar 

  13. Agrawal A, Singh PP, Bottazzi B, Garlanda C, Mantovani A. Pattern recognition by pentraxins. Adv Exp Med Biol. 2009;653:98–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Deban L, Jarva H, Lehtinen MJ, et al. Binding of the long pentraxin PTX3 to factor H: interacting domains and function in the regulation of complement activation. J Immunol. 2008;181(12):8433–40.

    CAS  PubMed  Google Scholar 

  15. Inforzato A, Peri G, Doni A, et al. Structure and function of the long pentraxin PTX3 glycosidic moiety: fine-tuning of the interaction with C1q and complement activation. Biochemistry. 2006;45(38):11540–51.

    CAS  PubMed  Google Scholar 

  16. Gout E, Moriscot C, Doni A, et al. M-ficolin interacts with the long pentraxin PTX3: a novel case of cross-talk between soluble pattern-recognition molecules. J Immunol. 2011;186(10):5815–22.

    CAS  PubMed  Google Scholar 

  17. Inforzato A, Baldock C, Jowitt TA, et al. The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2. J Biol Chem. 2010;285(23):17681–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol. 2010;28:157–83.

    CAS  PubMed  Google Scholar 

  19. Doni A, Michela M, Bottazzi B, et al. Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-gamma. J Leukoc Biol. 2006;79(4):797–802.

    CAS  PubMed  Google Scholar 

  20. Jaillon S, Peri G, Delneste Y, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204(4):793–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Doni A, Garlanda C, Bottazzi B, et al. Interactions of the humoral pattern recognition molecule PTX3 with the complement system. Immunobiology. 2012;217(11):1122–8.

    CAS  PubMed  Google Scholar 

  22. Baruah P, Propato A, Dumitriu IE, et al. The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood. 2006;107(1):151–8.

    CAS  PubMed  Google Scholar 

  23. Baruah P, Dumitriu IE, Peri G, et al. The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol. 2006;80(1):87–95.

    CAS  PubMed  Google Scholar 

  24. Deban L, Russo RC, Sironi M, et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol. 2010;11(4):328–34.

    CAS  PubMed  Google Scholar 

  25. Leali D, Alessi P, Coltrini D, et al. Long pentraxin-3 inhibits FGF8b-dependent angiogenesis and growth of steroid hormone-regulated tumors. Mol Cancer Ther. 2011;10(9):1600–10.

    CAS  PubMed  Google Scholar 

  26. Presta M, Foglio E, ChurrucaSchuind A, Ronca R. Long pentraxin-3 modulates the angiogenic activity of fibroblast growth factor-2. Front Immunol. 2018;9:2327.

    PubMed  PubMed Central  Google Scholar 

  27. Leali D, Inforzato A, Ronca R, et al. Long pentraxin 3/tumor necrosis factor-stimulated gene-6 interaction: a biological rheostat for fibroblast growth factor 2-mediated angiogenesis. Arterioscler Thromb Vasc Biol. 2012;32(3):696–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leali D, Bianchi R, Bugatti A, et al. Fibroblast growth factor 2-antagonist activity of a long-pentraxin 3-derived anti-angiogenic pentapeptide. J Cell Mol Med. 2010;14(8):2109–21.

    CAS  PubMed  Google Scholar 

  29. Ronca R, Giacomini A, Di Salle E, et al. Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell. 2015;28(2):225–39.

    CAS  PubMed  Google Scholar 

  30. Locatelli M, Ferrero S, MartinelliBoneschi F, et al. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol. 2013;260(1–2):99–106.

    CAS  PubMed  Google Scholar 

  31. Tung JN, Ko CP, Yang SF, et al. Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol. 2016;129(2):201–9.

    CAS  PubMed  Google Scholar 

  32. Liu Q, Wang XY, Qin YY, et al. SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. Am J Cancer Res. 2018;8(4):624–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li W, Cai H, Ren L, et al. Sphingosine kinase 1 promotes growth of glioblastoma by increasing inflammation mediated by the NF-κB /IL-6/STAT3 and JNK/PTX3 pathways. Acta pharmaceutica Sinica B. 2022;12(12):4390–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo X, Tu T, Zhong Y, et al. ceRNA network analysis shows that lncRNA CRNDE promotes progression of glioblastoma through sponge mir-9-5p. Front Genet. 2021;12:617350.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Wang Y, Zhao Y, et al. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther. 2022;28(11):1748–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan F, Zhang H, Dai Z, et al. A comprehensive prognostic signature for glioblastoma patients based on transcriptomics and single cell sequencing. Cell Oncol (Dordr). 2021;44(4):917–35.

    CAS  PubMed  Google Scholar 

  37. Wesley UV, Sutton I, Clark PA, et al. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res. 2022;1776:147752.

    CAS  PubMed  Google Scholar 

  38. Kaushal P, Zhu J, Wan Z, et al. Prognosis and immune landscapes in glioblastoma based on gene-signature related to reactive-oxygen-species. NeuroMol Med. 2023;25(1):102–19.

    CAS  Google Scholar 

  39. Wang Z, Wang X, Zhang N, et al. Pentraxin 3 promotes glioblastoma progression by negative regulating cells autophagy. Front Cell Dev Biol. 2020;8:795.

    PubMed  PubMed Central  Google Scholar 

  40. Lathoria K, Gowda P, Umdor SB, et al. PRMT1 driven PTX3 regulates ferritinophagy in glioma. Autophagy. 2023;19(7):1997–2014.

    CAS  PubMed  Google Scholar 

  41. Petterson SA, Sørensen MD, Kristensen BW. Expression profiling of primary and recurrent glioblastomas reveals a reduced level of pentraxin 3 in recurrent glioblastomas. J Neuropathol Exp Neurol. 2020;79(9):975–85.

    CAS  PubMed  Google Scholar 

  42. Li Y, Song X, Niu J, et al. Pentraxin 3 acts as a functional effector of Akt/NF-κB signaling to modulate the progression and cisplatin-resistance in non-small cell lung cancer. Arch Biochem Biophys. 2021;701:108818.

    CAS  PubMed  Google Scholar 

  43. Hu T, Qiao L, Li H, et al. Pentraxin 3 (PTX-3) levels in bronchoalveolar lavage fluid as a lung cancer biomarker. Dis Markers. 2020;2020:4652483.

    PubMed  PubMed Central  Google Scholar 

  44. Diamandis EP, Goodglick L, Planque C, Thornquist MD. Pentraxin-3 is a novel biomarker of lung carcinoma. Clin Cancer Res. 2011;17(8):2395–9.

    CAS  PubMed  Google Scholar 

  45. Liu C, Yao Y, Wang W. Pentraxin-3 as a prognostic marker in patients with small-cell lung cancer. Medical Oncol (Northwood, London, England). 2014;31(10):207.

    Google Scholar 

  46. Infante M, Allavena P, Garlanda C, et al. Prognostic and diagnostic potential of local and circulating levels of pentraxin 3 in lung cancer patients. Int J Cancer. 2016;138(4):983–91.

    CAS  PubMed  Google Scholar 

  47. Zhang D, Ren WH, Gao Y, Wang NY, Wu WJ. Clinical significance and prognostic value of pentraxin-3 as serologic biomarker for lung cancer. Asian Pac J Cancer Prev. 2013;14(7):4215–21.

    PubMed  Google Scholar 

  48. Stallone G, Cormio L, Netti GS, et al. Pentraxin 3: a novel biomarker for predicting progression from prostatic inflammation to prostate cancer. Cancer Res. 2014;74(16):4230–8.

    CAS  PubMed  Google Scholar 

  49. Hu FQ, Qiao T, Xie X, Hu R, Xiao HB. Knockdown of the inflammatory factor pentraxin-3 suppresses growth and invasion of lung adenocarcinoma through the AKT and NF-kappa B pathways. J Biol Regul Homeost Agents. 2014;28(4):649–57.

    CAS  PubMed  Google Scholar 

  50. Ahmmed B, Khan MN, Nisar MA, et al. Tunicamycin enhances the suppressive effects of cisplatin on lung cancer growth through PTX3 glycosylation via AKT/NF-κB signaling pathway. Int J Oncol. 2019;54(2):431–42.

    CAS  PubMed  Google Scholar 

  51. Falagario UG, Busetto GM, Netti GS, et al. Prospective validation of pentraxin-3 as a novel serum biomarker to predict the risk of prostate cancer in patients scheduled for prostate biopsy. Cancers (Basel). 2021;13(7):1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stallone G, Netti GS, Cormio L, et al. Modulation of complement activation by pentraxin-3 in prostate cancer. Sci Rep. 2020;10(1):18400.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saraji A, Duan K, Watermann C, et al. The gene expression landscape of prostate cancer BM reveals close interaction with the bone microenvironment. Int J Mol Sci. 2022;23(21):13029.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Scimeca M, Bonfiglio R, Urbano N, et al. Programmed death ligand 1 expression in prostate cancer cells is associated with deep changes of the tumor inflammatory infiltrate composition. Urol Oncol. 2019;37(5):297.e19-.e31.

    CAS  PubMed  Google Scholar 

  55. Ronca R, Tamma R, Coltrini D, et al. Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer. Oncotarget. 2017;8(47):82583–92.

    PubMed  PubMed Central  Google Scholar 

  56. Giacomini A, Matarazzo S, Pagano K, et al. A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers. Oncotarget. 2015;6(15):13790–802.

    PubMed  PubMed Central  Google Scholar 

  57. Ronca R, Alessi P, Coltrini D, et al. Long pentraxin-3 as an epithelial-stromal fibroblast growth factor-targeting inhibitor in prostate cancer. J Pathol. 2013;230(2):228–38.

    CAS  PubMed  Google Scholar 

  58. Thomas C, Henry W, Cuiffo BG, et al. Pentraxin-3 is a PI3K signaling target that promotes stem cell-like traits in basal-like breast cancers. Sci Signal. 2017. https://doi.org/10.1126/scisignal.aah4674.

  59. Chivot J, Ferrand N, Fert A, et al. PARP inhibitor inhibits the vasculogenic mimicry through a NF-κB-PTX3 axis signaling in breast cancer cells. Int J Mol Sci. 2022;23(24):16171.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wills CA, Liu X, Chen L, et al. Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis. Cancer Res. 2021;81(2):452–63.

    CAS  PubMed  Google Scholar 

  61. Choi B, Lee EJ, Song DH, et al. Elevated Pentraxin 3 in bone metastatic breast cancer is correlated with osteolytic function. Oncotarget. 2014;5(2):481–92.

    PubMed  PubMed Central  Google Scholar 

  62. Kampo S, Ahmmed B, Zhou T, et al. Corrigendum: scorpion venom analgesic peptide, BmK AGAP inhibits stemness and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front Oncol. 2021;11:639813.

    PubMed  PubMed Central  Google Scholar 

  63. Kamal MA, Siddiqui I, Belgiovine C, et al. Oncogenic KRAS-induced protein signature in the tumor secretome identifies laminin-C2 and pentraxin-3 as useful biomarkers for the early diagnosis of pancreatic cancer. Cancers (Basel). 2022;14(11):2653.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goulart MR, Watt J, Siddiqui I, et al. Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma. NPJ Precis Oncol. 2021;5(1):61.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sato K, Hikita H, Shigekawa M, et al. Pentraxin 3 is an adipose tissue-related serum marker for pancreatic cancer cachexia predicting subsequent muscle mass and visceral fat loss. Cancer Sci. 2022;113(12):4311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kondo S, Ueno H, Hosoi H, et al. Clinical impact of pentraxin family expression on prognosis of pancreatic carcinoma. Br J Cancer. 2013;109(3):739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Feder S, Haberl EM, Spirk M, et al. Pentraxin-3 is not related to disease severity in cirrhosis and hepatocellular carcinoma patients. Clin Exp Med. 2020;20(2):289–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Song T, Wang C, Guo C, Liu Q, Zheng X. Pentraxin 3 overexpression accelerated tumor metastasis and indicated poor prognosis in hepatocellular carcinoma via driving epithelial-mesenchymal transition. J Cancer. 2018;9(15):2650–8.

    PubMed  PubMed Central  Google Scholar 

  69. Deng H, Fan X, Wang X, et al. Serum pentraxin 3 as a biomarker of hepatocellular carcinoma in chronic hepatitis B virus infection. Sci Rep. 2020;10(1):20276.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cabiati M, Gaggini M, De Simone P, Del Ry S. Do pentraxin 3 and neural pentraxin 2 have different facet function in hepatocellular carcinoma? Clin Exp Med. 2021;21(4):555–62.

    CAS  PubMed  Google Scholar 

  71. Carmo RF, Aroucha D, Vasconcelos LR, et al. Genetic variation in PTX3 and plasma levels associated with hepatocellular carcinoma in patients with HCV. J Viral Hepatitis. 2016;23(2):116–22.

    CAS  Google Scholar 

  72. Fan Z, Zheng Y, Li X, et al. Promoting role of pentraxin-3 in esophageal squamous cell carcinoma. Mol Ther Oncol. 2022;24:772–87.

    CAS  Google Scholar 

  73. Ma D, Zong Y, Zhu ST, et al. Inhibitory Role of pentraxin-3 in esophageal squamous cell carcinoma. Chin Med J (Engl). 2016;129(18):2233–40.

    CAS  PubMed  Google Scholar 

  74. Wang JX, He YL, Zhu ST, Yang S, Zhang ST. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in human esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17(37):4225–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cui X, Zhang H, Cao A, Cao L, Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. J Cancer. 2020;11(7):1800–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeni M, Korkut E, Aksungur N, et al. Determination of pentraxin-3, interleukin-8 and vascular endothelial growth factor levels in patients with gastric adenocarcinoma. Asian Pac J Cancer Prev. 2021;22(5):1507–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui X, Qin T, Zhao Z, et al. Pentraxin-3 inhibits milky spots metastasis of gastric cancer by inhibiting M2 macrophage polarization. J Cancer. 2021;12(15):4686–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi B, Lee EJ, Shin MK, et al. Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget. 2016;7(34):55506–17.

    PubMed  PubMed Central  Google Scholar 

  79. Choi B, Lee EJ, Park YS, et al. Pentraxin-3 silencing suppresses gastric cancer-related inflammation by inhibiting chemotactic migration of macrophages. Anticancer Res. 2015;35(5):2663–8.

    CAS  PubMed  Google Scholar 

  80. Cui H, Zhang L, Chen B, et al. TNFAIP6 promotes gastric carcinoma cell invasion via upregulating PTX3 and activating the Wnt/β-catenin signaling pathway. Contrast Media Mol Imaging. 2022;2022:5697034.

    PubMed  PubMed Central  Google Scholar 

  81. Liu B, Zhao Y, Guo L. Increased serum pentraxin-3 level predicts poor prognosis in patients with colorectal cancer after curative surgery, a cohort study. Medicine. 2018;97(40):e11780.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang J, Wang TY, Niu XC. Increased plasma levels of pentraxin 3 are associated with poor prognosis of colorectal carcinoma patients. Tohoku J Exp Med. 2016;240(1):39–46.

    CAS  PubMed  Google Scholar 

  83. Ronca R, Taranto S, Corsini M, et al. Pentraxin 3 inhibits the angiogenic potential of multiple myeloma cells. Cancers (Basel). 2021;13(9):2255.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Basile A, Moschetta M, Ditonno P, et al. Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross-talk in the bone marrow of multiple myeloma patients. J Pathol. 2013;229(1):87–98.

    CAS  PubMed  Google Scholar 

  85. Dander E, Fallati A, Gulić T, et al. Monocyte-macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia. Br J Haematol. 2021;193(6):1157–71.

    CAS  PubMed  Google Scholar 

  86. Carreras J, Kikuti YY, Hiraiwa S, et al. High PTX3 expression is associated with a poor prognosis in diffuse large B-cell lymphoma. Cancer Sci. 2022;113(1):334–48.

    CAS  PubMed  Google Scholar 

  87. Mu S, Shi D, Ai L, et al. International prognostic index-based immune prognostic model for diffuse large B-cell lymphoma. Front Immunol. 2021;12:732006.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Veletic I, Manshouri T, Newberry KJ, et al. Pentraxin-3 plasma levels correlate with tumour burden and overall survival in patients with primary myelofibrosis. Br J Haematol. 2019;185(2):382–6.

    PubMed  Google Scholar 

  89. Luo Y, Chen R, Ning Z, Fu N, Xie M. Identification of a four-gene signature for determining the prognosis of papillary thyroid carcinoma by integrated bioinformatics analysis. Int J Gen Med. 2022;15:1147–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Matarazzo S, Melocchi L, Rezzola S, et al. Long pentraxin-3 follows and modulates bladder cancer progression. Cancers (Basel). 2019;11(9):1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Annese T, Ronca R, Tamma R, et al. PTX3 modulates neovascularization and immune inflammatory infiltrate in a murine model of fibrosarcoma. Int J Mol Sci. 2019;20(18):4599.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rodrigues PF, Matarazzo S, Maccarinelli F, et al. Long Pentraxin 3-mediated fibroblast growth factor trapping impairs fibrosarcoma growth. Front Oncol. 2018;8:472.

    PubMed  PubMed Central  Google Scholar 

  93. Zhou H, He Y, Li L, Wu C, Hu G. Identification novel prognostic signatures for Head and Neck Squamous Cell Carcinoma based on ceRNA network construction and immune infiltration analysis. Int J Med Sci. 2021;18(5):1297–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget. 2017;8(25):41364–78.

    PubMed  PubMed Central  Google Scholar 

  95. Chang WC, Wu SL, Huang WC, et al. PTX3 gene activation in EGF-induced head and neck cancer cell metastasis. Oncotarget. 2015;6(10):7741–57.

    PubMed  PubMed Central  Google Scholar 

  96. Zhang JC, Tao T, Liu JQ. PTX3 promotes proliferation, invasion and drug resistance of neuroblastoma cells in children by regulating TLR4/NF-κB signaling pathway. Zhonghua Zhong Liu Za Zhi. 2021;43(1):118–25.

    CAS  PubMed  Google Scholar 

  97. Ying TH, Lee CH, Chiou HL, et al. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells. Sci Rep. 2016;6:29385.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang X, Li D, Liu C, Zhang Z, Wang T. Pentraxin 3 is a diagnostic and prognostic marker for ovarian epithelial cancer patients based on comprehensive bioinformatics and experiments. Cancer Cell Int. 2021;21(1):193.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Netti GS, Lucarelli G, Spadaccino F, et al. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging. 2020;12(8):7585–602.

    PubMed  PubMed Central  Google Scholar 

  100. Rathore M, Girard C, Ohanna M, et al. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene. 2019;38(30):5873–89.

    CAS  PubMed  Google Scholar 

  101. Ke HH, Hueng DY, Tsai WC. Low expression of pentraxin 3 and nuclear factor-like 2 implying a relatively longer overall survival time in gliomas. Chin J Physiol. 2019;62(1):35–43.

    CAS  PubMed  Google Scholar 

  102. Hsiao YW, Li CF, Chi JY, et al. CCAAT/enhancer binding protein δ in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Science signaling. 2013;6(284):ra59.

    PubMed  Google Scholar 

  103. Rezzola S, Ronca R, Loda A, et al. The autocrine FGF/FGFR system in both skin and uveal melanoma: FGF trapping as a possible therapeutic approach. Cancers (Basel). 2019;11(9):1305.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the foundation of "Attracting Phoenix Program" of Tangdu Hospital of Air Force Military Medical University (NO. 2021YFJH001).

Author information

Authors and Affiliations

Authors

Contributions

DL: Conceive, structure, and write this review. ZH: later revision of language and grammar, and article format. YN&YC: conceive and structure this review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yandong Nan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hao, Z., Nan, Y. et al. Role of long pentraxin PTX3 in cancer. Clin Exp Med 23, 4401–4411 (2023). https://doi.org/10.1007/s10238-023-01137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01137-7

Keywords

Navigation