Skip to main content

Advertisement

Log in

Identification and validation of the optimal reference genes for standardizing the gene expression profiling diagnostic panel of Ph-like B-lineage acute lymphoblastic leukemia

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

This article has been updated

Abstract

Gene expression profiling is the criterion standard for recognizing Ph-like ALL signatures among B-ALLs. The prerequisite of GEP is the accurate normalization of target genes with stable expression of housekeeping genes in a quantitative PCR. HKGs exhibit differential expression in the different experimental conditions and affect the target genes' expression, leading to imprecise qPCR results. The selection of stable HKGs is crucial in GEP experiments, especially in identifying high-risk Ph-like ALL cases. We have evaluated the expression stability of nine HKGs (GAPDH, ACTB, GUSB, RNA18S, EEF2, PGK1, B2M, TBP and ABL1) in identified Ph-like ALLs and Ph-negative (n = 23 each) using six algorithms, 4 traditional softwares; geNorm, BestKeeper, NormFinder, Delta Cq value method, and two algorithms, RefFinderTM and ComprFinder. Further, we have validated the expression of 8 overexpressed normalized genes in Ph-like ALL cases (JCHAIN, CA6, MUC4, SPATS2L, BMPR1B, CRLF2, ADGRF1 and NRXN3). GeNorm, BestKeeper, NormFinder, Delta Cq value method, RefFinderTM and ComprFinder algorithm analysis revealed that EEF2, GAPDH, and PGK1 form the best representative HKGs in Ph-like ALL cases, while RNA18s, ß-actin, and ABL1 in Ph-negative ALLs. Lastly, we performed a correlation analysis and found that the combination of EEF2, GAPDH, and PGK1 represents the best combination with a very high correlation in Ph-like ALL cases. This is the first report that shows EEF2, GAPDH, and PGK1 are the best HKG genes and can be used in the diagnostic panel of Ph-like ALL cases using qPCR at baseline diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data will be provided upon request, and all the data generated during this study are included in this research article.

Change history

  • 26 August 2023

    In the introduction section, reference citation has been updated from [3, 5–14, 14–21] to [3, 5–21]

References

  1. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  2. Alaggio R, Amador C, Anagnostopoulos I, et al. (2022) The 5th edition of the World Health Organization classification of Haematolymphoid tumours: Lymphoid neoplasms. Leukemia 36(7):1720–48

  3. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15. https://doi.org/10.1056/NEJMoa1403088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology Am Soc Hematol Educ Program. 2014;2014(1):174–80. https://doi.org/10.1182/asheducation-2014.1.174.

    Article  PubMed  Google Scholar 

  5. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. https://doi.org/10.1056/NEJMoa0808253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. https://doi.org/10.1016/S1470-2045(08)70339-5.

    Article  CAS  Google Scholar 

  7. Herold T, Schneider S, Metzeler KH, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102(1):130–8. https://doi.org/10.3324/haematol.2015.136366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heatley SL, Sadras T, Kok CH, et al. High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica. 2017;102(12):e490–3. https://doi.org/10.3324/haematol.2016.162925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood. 2018;132(8):815–24. https://doi.org/10.1182/blood-2018-04-841676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401. https://doi.org/10.1200/JCO.2016.69.0073.

    Article  PubMed  Google Scholar 

  11. Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–81. https://doi.org/10.1182/blood-2016-07-726588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352–61. https://doi.org/10.1182/blood-2016-12-758979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiaretti S, Gianfelici V, O’Brien SM, Mullighan CG. Advances in the genetics and therapy of acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2016;35:e314–22. https://doi.org/10.14694/EDBK_156628.

    Article  PubMed  Google Scholar 

  14. Harvey RC, Kang H, Roberts KG, et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention. Blood. 2013;122(21):826–826. https://doi.org/10.1182/blood.V122.21.826.826.

    Article  Google Scholar 

  15. Boer JM, Koenders JE, van der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–4. https://doi.org/10.3324/haematol.2014.117424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiaretti S, Messina M, Grammatico S, et al. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol. 2018;181(5):642–52. https://doi.org/10.1111/bjh.15251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain S, Abraham A. BCR-ABL1-like B-acute lymphoblastic leukemia/lymphoma: a comprehensive review. Arch Pathol Lab Med. 2020;144(2):150–5. https://doi.org/10.5858/arpa.2019-0194-RA.

    Article  CAS  PubMed  Google Scholar 

  18. Chiaretti S, Messina M, Foa R. BCR/ABL1-like acute lymphoblastic leukemia: How to diagnose and treat? Cancer. 2019;125(2):194–204. https://doi.org/10.1002/cncr.31848.

    Article  CAS  PubMed  Google Scholar 

  19. Shiraz P, Payne KJ, Muffly L. The current genomic and molecular landscape of philadelphia-like acute lymphoblastic leukemia. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21062193.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ofran Y, Izraeli S. BCR-ABL (Ph)-like acute leukemia-Pathogenesis, diagnosis and therapeutic options. Blood Rev. 2017;31(2):11–6. https://doi.org/10.1016/j.blre.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta DG, Varma N, Kumar A, et al. PHi-RACE: PGIMER in-house rapid and cost effective classifier for the detection of BCR-ABL1-like acute lymphoblastic leukaemia in Indian patients. Leuk Lymphoma. 2022;63(3):633–43. https://doi.org/10.1080/10428194.2021.1999439.

    Article  CAS  PubMed  Google Scholar 

  22. Tsaur G, Muhacheva T, Kovalev S, et al. Application of real-time PCR for the detection of BCR-ABL1-like group in pediatric acute lymphoblastic leukemia patients. Blood. 2018;132(Supplement 1):1376–1376. https://doi.org/10.1182/blood-2018-99-115035.

    Article  Google Scholar 

  23. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. https://doi.org/10.1186/gb-2002-3-7-research0034.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beillard E, Pallisgaard N, Velden V, et al. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G, Watzinger F, Lion T, van Dongen JJ, Hokland P, Gabert JEvaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe Against Cancer program. Leukemia 17: 2474–2486. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 01/01 2004;17:2474–86. https://doi.org/10.1038/sj.leu.2403136

  25. Lemma S, Avnet S, Salerno M, Chano T, Baldini N. Identification and validation of housekeeping genes for gene expression analysis of cancer stem cells. PLoS ONE. 2016;11(2):e0149481. https://doi.org/10.1371/journal.pone.0149481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006. https://doi.org/10.1186/1471-2199-7-33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Villegas-Ruiz V, Olmos-Valdez K, Castro-Lopez KA, et al. Identification and validation of novel reference genes in acute lymphoblastic leukemia for droplet digital PCR. Genes (Basel). 2019. https://doi.org/10.3390/genes10050376.

    Article  PubMed  Google Scholar 

  28. Chapman JR, Waldenstrom J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS ONE. 2015;10(11):e0141853. https://doi.org/10.1371/journal.pone.0141853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aggarwal A, Jamwal M, Viswanathan GK, et al. Optimal reference gene selection for expression studies in human reticulocytes. J Mol Diagn. 2018;20(3):326–33. https://doi.org/10.1016/j.jmoldx.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta DG, Varma N, Kumar A, et al. Identification and validation of suitable housekeeping genes for gene expression studies in BCR-ABL1 positive B-lineage acute lymphoblastic leukemia. Mol Biol Rep. 2022. https://doi.org/10.1007/s11033-022-07337-w.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15. https://doi.org/10.1023/b:bile.0000019559.84305.47.

    Article  CAS  PubMed  Google Scholar 

  32. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50. https://doi.org/10.1158/0008-5472.CAN-04-0496.

    Article  CAS  PubMed  Google Scholar 

  33. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012. https://doi.org/10.1007/s11103-012-9885-2.

    Article  PubMed  Google Scholar 

  34. Zhang J, Deng C, Li J, Zhao Y. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus). BMC Genomics. 2020;21(1):493. https://doi.org/10.1186/s12864-020-06912-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta DG, Varma N, Kumar A, et al. Genomic and Proteomic characterization of Ph-like B-lineage Acute Lymphoblastic Leukemia. A report of Indian patients: Cancer; 2022. https://doi.org/10.1002/cncr.34665.

    Book  Google Scholar 

  36. Sharma M, Sachdeva MU, Varma N, Varma S, Marwaha RK. Characterization of immunophenotypic aberrancies in adult and childhood acute lymphoblastic leukemia: A study from Northern India. J Cancer Res Ther Apr-Jun. 2016;12(2):620–6. https://doi.org/10.4103/0973-1482.147716.

    Article  CAS  Google Scholar 

  37. Gupta DG, Varma N, Naseem S, et al. Characterization of immunophenotypic aberrancies with respect to common fusion transcripts in B-cell precursor acute lymphoblastic leukemia: a report of 986 Indian patients. Turk J Haematol. 2022;39(1):1–12. https://doi.org/10.4274/tjh.galenos.2021.2021.0326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pakakasama S, Kajanachumpol S, Kanjanapongkul S, et al. Simple multiplex RT-PCR for identifying common fusion transcripts in childhood acute leukemia. Int J Lab Hematol. 2008;30(4):286–91. https://doi.org/10.1111/j.1751-553X.2007.00954.x.

    Article  CAS  PubMed  Google Scholar 

  39. Bhatia P, Binota J, Varma N, et al. Incidence of common chimeric fusion transcripts in B-cell acute lymphoblastic leukemia: an Indian perspective. Acta Haematol. 2012;128(1):17–9. https://doi.org/10.1159/000338260.

    Article  CAS  PubMed  Google Scholar 

  40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are highly thankful to the Department of Hematology faculty members for providing the necessary infrastructure and facilities for this research study. We also thank the Department of Paediatrics, Internal Medicine and Clinical Hematology and Medical Oncology for providing the pediatric and adult B-ALL samples. Our sincere appreciation to the clerical staff (Mr. Gurpreet) of Hematology for their valuable support and contribution to this research work.

Funding

Supported by the Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India (Grant INT/IEC/2019/000611; 19.03.2019).

Author information

Authors and Affiliations

Authors

Contributions

DGG and NV conceptualized and designed the experimental plan of the research study. DGG, JB, and PB performed the outlined experiments planned in the study; DGG and NV wrote and prepared the manuscript. DGG SAA, and PS, MRS, performed the statistical analysis and analyzed the generated research data. PM, AK, and SV provided the B-ALL samples in this study. All other authors read, approved, and provided the necessary intellectual comments to the submitted manuscript.

Corresponding author

Correspondence to Neelam Varma.

Ethics declarations

Conflict of interest

None Declared.

Consent for publication

Not Applicable.

Ethics approval

Post Graduate Institute of Medical Education and Research (PGIMER) constituted Institutional Ethics Committee (IEC) approved this study (vide no. INT/IEC/2019/000611; 19.03.2019). Written consent Performa was obtained from all the enrolled patients, and all the procedures were performed according to the Helsinki Declaration 1975 (Revised 2008).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.G., Varma, N., Abdulkadir, S.A. et al. Identification and validation of the optimal reference genes for standardizing the gene expression profiling diagnostic panel of Ph-like B-lineage acute lymphoblastic leukemia. Clin Exp Med 23, 4539–4551 (2023). https://doi.org/10.1007/s10238-023-01131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01131-z

Keywords

Navigation