Skip to main content

Advertisement

Log in

Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV) is known to cause hematological malignancy. Hematopoietic stem cell transplantation (HPSCT) is an advanced treatment for that. Currently, there are three successful HIV-eliminated cases, and two received HPSCT from CCR5-absent donors. It is well established that the CCR5 protein on the cell surface assists human immunodeficiency virus entry. Preliminary studies have revealed that knocking out CCR5 and/or CXCR4 may inhibit the viral entry of HIV, which may prove promising in the further development of HIV treatment options. Herein, we suggest performing autologous or allogeneic HSCT with CCR5 KO hematopoietic stem cells in patients who suffer from complicated HIV conditions, particularly drug-resistant HIV or a concurrent diagnosis of HIV with lymphoma/leukemia, to achieve complete HIV remission. Nevertheless, at the clinical forefront of CRISPR-HIV technology, more efforts should be directed to advance nonhuman primate (NHP) models for studies of HIV pathogenesis and off-target assessments within this system.

Graphical abstract

CRISPR–Cas9 knock out of host HSCT-expressing CCR5 or CXCR4 may confer HIV-resistance, which when applied to bedside therapeutics in an allogeneic or autologous manner can warrant a permanent and effective treatment outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2:a006866.

    PubMed  PubMed Central  Google Scholar 

  2. Grogg KL, Miller RF, Dogan A. HIV infection and lymphoma. J Clin Pathol. 2007;60:1365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lurain K, Ramaswami R, Yarchoan R. The role of viruses in HIV-associated lymphomas. Semin Hematol. 2022;59(4):183–91.

    PubMed  PubMed Central  Google Scholar 

  4. Gupta RK, Peppa D, Hill AL, et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020;7:e340–7.

    PubMed  PubMed Central  Google Scholar 

  5. Freen-van Heeren JJ. Closing the door with CRISPR: genome editing of CCR5 and CXCR4 as a potential curative solution for HIV. BioTech. 2022;11:25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. Annu Rev Genet. 2006;40:363–83.

    CAS  PubMed  Google Scholar 

  7. Kotowski M, Sharma S. CRISPR-based editing techniques for genetic manipulation of primary T cells. Methods Protoc. 2020;3:79.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.

    PubMed  PubMed Central  Google Scholar 

  9. Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA. 2014;111:11461–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu W, Lei R, Le Duff Y, et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology. 2015;12:22.

    PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Pan Q, Gendron P, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15:481–9.

    CAS  PubMed  Google Scholar 

  12. Liao H-K, Gu Y, Diaz A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6:6413.

    CAS  PubMed  Google Scholar 

  13. Lebbink RJ, de Jong DCM, Wolters F, et al. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep. 2017;7:41968.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai M, Maori E, Quaranta P, et al. CRISPR/Cas9 ablation of integrated HIV-1 accumulates proviral DNA circles with reformed long terminal repeats. J Virol. 2021;95:e01358-e1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Herskovitz J, Hasan M, Patel M, et al. CRISPR–Cas9 mediated exonic disruption for HIV-1 elimination. EBioMedicine. 2021;73:103678.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med. 2022;20:39.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26:808–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28:839–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilen CB, Wang J, Tilton JC, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7:e1002020.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Didigu CA, Wilen CB, Wang J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho SW, Kim S, Kim JM, Kim J-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.

    CAS  PubMed  Google Scholar 

  22. Ye L, Wang J, Beyer AI, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA. 2014;111:9591–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li C, Guan X, Du T, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96:2381–93.

    CAS  PubMed  Google Scholar 

  24. Mandal PK, Ferreira LMR, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15:643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017;25:1782–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR–Cas12a system with only a single crRNA. Nucleic Acids Res. 2020;48:5527–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin L, Zhao F, Sun H, et al. CRISPR–Cas13a Inhibits HIV-1 Infection. Mol Ther Nucleic Acids. 2020;21:147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan M, Berkhout B, Herrera-Carrillo E. A combinatorial CRISPR–Cas12a attack on HIV DNA. Mol Ther Methods Clin Dev. 2022;25:43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dash PK, Kaminski R, Bella R, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019;10:2753.

    PubMed  PubMed Central  Google Scholar 

  30. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu L, Wang J, Liu Y, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381:1240–7.

    CAS  PubMed  Google Scholar 

  32. Jacobson CA, Abramson JS. HIV-associated Hodgkin’s lymphoma: prognosis and therapy in the era of cART. Adv Hematol. 2012;2012:e507257.

    Google Scholar 

  33. Michieli M, Mazzucato M, Tirelli U, De Paoli P. Stem cell transplantation for lymphoma patients with HIV infection. Cell Transpl. 2011;20:351–70.

    Google Scholar 

  34. Al Hamed R, Bazarbachi AH, Malard F, Harousseau J-L, Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019;9:44.

    PubMed  PubMed Central  Google Scholar 

  35. Champlin R. Selection of autologous or allogeneic transplantation. In: Holland-Frei Cancer Medicine. 6th edn. 2003. https://www.ncbi.nlm.nih.gov/books/NBK12844/. Accessed 23 Nov 2022.

  36. Grigg A, Ritchie D. Graft-versus-lymphoma effects: clinical review, policy proposals, and immunobiology. Biol Blood Marrow Transpl. 2004;10:579–90.

    CAS  Google Scholar 

  37. Scadden DT, Shen H, Cheng T. Hematopoietic stem cells in HIV disease. J Natl Cancer Inst Monogr. 2001;28:24–9.

    Google Scholar 

  38. Cannon P, June C. CCR5 knockout strategies. Curr Opin HIV AIDS. 2011;6:74–9.

    PubMed  PubMed Central  Google Scholar 

  39. Duarte RF, Salgado M, Sánchez-Ortega I, et al. CCR5 Δ32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report. Lancet HIV. 2015;2:e236-242.

    PubMed  Google Scholar 

  40. Marx V. The CRISPR children. Nat Biotechnol. 2021;39:1486–90.

    CAS  PubMed  Google Scholar 

  41. Wang G, Zhao N, Berkhout B, Das AT. CRISPR–Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016;24:522–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

    CAS  PubMed  Google Scholar 

  43. Jensen B-EO, Knops E, Cords L, Lübke N, Salgado M, Busman-Sahay K, Estes JD, Huyveneers LEP, Perdomo-Celis F, Wittner M, Gálvez C, Mummert C, Passaes C, Eberhard JM, Münk C, Hauber I, Hauber J, Heger E, De Clercq J, Vandekerckhove L, Bergmann S, Dunay GA, Klein F, Häussinger D, Fischer JC, Nachtkamp K, Timm J, Kaiser R, Harrer T, Luedde T, Nijhuis M, Sáez-Cirión A, Schulze zur Wiesch J, Wensing AMJ, Martinez-Picado J, Kobbe G. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat Med. 2023;29:583–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. 2020;38:620–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tumwine LK, Orem J, Kerchan P, Byarugaba W, Pileri SA. EBV, HHV8 and HIV in B cell non Hodgkin lymphoma in Kampala, Uganda. Infect Agent Cancer. 2010;5:1–7.

    Google Scholar 

  46. Kashyap R, Rai Mittal B, Manohar K, Balasubramanian Harisankar CN, Bhattacharya A, Singh B, Malhotra P, Varma S. Extranodal manifestations of lymphoma on [18F]FDG-PET/CT: a pictorial essay. Cancer Imaging. 2011;11(1):166–74.

    PubMed  PubMed Central  Google Scholar 

  47. Re A, Cattaneo C, Rossi G. HIV and lymphoma: from epidemiology to clinical management. Mediterr J Hematol Infect Dis. 2019;11(1):e2019004.

    PubMed  PubMed Central  Google Scholar 

  48. Bhatia S. Long-term health impacts of hematopoietic stem cell transplantation inform recommendations for follow-up. Expert Rev Hematol. 2011;4(4):437–52.

    PubMed  PubMed Central  Google Scholar 

  49. Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol. 2020;11:2109.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Diaz GA, Gulino AV. WHIM syndrome: a defect in CXCR4 signaling. Curr Allergy Asthma Rep. 2005;5:350–5.

    CAS  PubMed  Google Scholar 

  51. Venuti A, Pastori C, Lopalco L. The role of natural antibodies to CC chemokine receptor 5 in HIV infection. Front Immunol. 2017;8:1358.

    PubMed  PubMed Central  Google Scholar 

  52. Ghorban K, Dadmanesh M, Hassanshahi G, et al. Is the CCR5 Δ 32 mutation associated with immune system-related diseases? Inflammation. 2013;36:633–42.

    CAS  PubMed  Google Scholar 

  53. Tang X, Alatrash G, Ning J, et al. Increasing chimerism following allogeneic stem cell transplantation is associated with longer survival time. Biol Blood Marrow Transpl. 2014;20:1139–44.

    CAS  Google Scholar 

  54. Wang L, Wang L, Zhou J, et al. Low-dose decitabine monotherapy reverses mixed chimerism in adult patients after allogeneic hematopoietic stem cell transplantation with myeloablative conditioning regimen: a pilot phase II study. Front Med. 2021;8:627946.

    Google Scholar 

  55. Dai W, Wu F, McMyn N, et al. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med. 2022;14:eabh3351.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiatt J, Hultquist JF, McGregor MJ, et al. A functional map of HIV-host interactions in primary human T cells. Nat Commun. 2022;13:1752.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology. 2022;19:17.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphical abstract was created with Biorender.com.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Jayshen Arudkumar.

Ethics declarations

Conflict of interest

None declared.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Search strategy and selection criteria

References for this review were identified through searches on PubMed and CrossRef with defined search terms such as “CRISPR HIV”, “leukemia”, “lymphoma”, “HIV” and “CCR5”. Articles were also identified through searches of the author’s own files, primarily through Google Scholar. Ongoing clinical trials were sourced from ‘ClinicalTrials.gov’. Only papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au, T.Y., Arudkumar, J., Assavarittirong, C. et al. Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently. Clin Exp Med 23, 4163–4175 (2023). https://doi.org/10.1007/s10238-023-01129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01129-7

Keywords

Navigation