Skip to main content

Advertisement

Log in

Current status and future of anti-angiogenic drugs in lung cancer

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Lung cancer, as a malignant tumor with both high incidence and mortality in China, is one of the major causes of death in our population and one of the major public health problems in China. Effective treatment of lung cancer is a major public health task for all human beings. Angiogenesis plays an important role in the development of tumor, not only as a basic condition for tumor growth, but also as a significant factor to promote tumor metastasis. Therefore, anti-angiogenesis has become a vital means to inhibit tumor development, and anti-angiogenic drugs can rebalance pro- and anti-angiogenic factors to inhibit tumor cells. This article reviews the mechanism of blood vessel formation in tumor tissues and the mechanism of action of different anti-angiogenic drugs, the combination therapy of anti-angiogenic drugs and other anti-tumor drugs, and the mechanism of anti-angiogenic drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data and materials availability

Not applicable.

References

  1. Remon J, Lacas B, Herbst R, et al. ANtiangiogenic second-line lung cancer meta-analysis on individual patient data in non-small cell lung cancer: ANSELMA. Eur J Cancer. 2022;166:112–25.

    CAS  PubMed  Google Scholar 

  2. Manzo A, Montanino A, Carillio G, et al. Angiogenesis inhibitors in NSCLC. Int J Molecul Sci. 2017;18(10):2021.

    Google Scholar 

  3. Choi SH, Yoo SS, Lee SY, Park JY. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer. Arch Pharmacal Res. 2022;45(4):263–79.

    CAS  Google Scholar 

  4. Tirpe A, Gulei D, Tirpe GR, et al. Beyond conventional: the new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy. Int J Molecul Sci. 2020;21(21):8002.

    CAS  Google Scholar 

  5. Reck M, Garassino MC, Imbimbo M, et al. Antiangiogenic therapy for patients with aggressive or refractory advanced non-small cell lung cancer in the second-line setting. Lung Cancer (Amsterdam, Netherlands). 2018;120:62–9.

    PubMed  Google Scholar 

  6. Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential therapeutic strategies for lung and breast cancers through understanding the anti-angiogenesis resistance mechanisms. Int J Molecul Sci. 2020: 21(2)

  7. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    CAS  PubMed  Google Scholar 

  8. Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86: 102017.

    CAS  PubMed  Google Scholar 

  9. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.

    CAS  PubMed  Google Scholar 

  10. Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol. 2018;29(21):i3–9.

    PubMed  Google Scholar 

  11. Wakelee HA, Dahlberg SE, Keller SM, et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2017;18(12):1610–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch TJ, Spigel DR, Brahmer J, et al. Safety and effectiveness of bevacizumab-containing treatment for non-small-cell lung cancer: final results of the ARIES observational cohort study. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9(9):1332–9.

    CAS  Google Scholar 

  13. Soria JC, Mauguen A, Reck M, et al. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol Off J Eur Soc Med Oncol. 2013;24(1):20–30.

    Google Scholar 

  14. Hu H, Chen Y, Tan S, et al. The Research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front Immunol. 2022;13: 802846.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren S, Xiong X, You H, Shen J, Zhou P. The combination of immune checkpoint blockade and angiogenesis inhibitors in the treatment of advanced non-small cell lung cancer. Front Immunol. 2021;12: 689132.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401.

    CAS  PubMed  Google Scholar 

  17. Sebastian M, Stratmann JA, Eberhardt WEE. Too Good to be True? J Thorac Oncol. 2021;16(4):507–8.

    PubMed  Google Scholar 

  18. Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020;383(14):1328–1339.

    CAS  PubMed  Google Scholar 

  19. Ferrara R, Imbimbo M, Malouf R, et al. Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2021;4(4):CD013257.

    PubMed  Google Scholar 

  20. Liu X. Effectiveness of bevacizumab in combination with gefitinib for EGFR mutation-positive advanced non-small cell lung cancer. China Modern Drug Appl. 2021;15(02):173–5 (In Chinese).

    Google Scholar 

  21. Du L, Shi X. Meta-analysis of the efficacy and safety of EGFR-TKIs in combination with bevacizumab in the treatment of non-small cell lung cancer. Mod Med Oncol. 2021;29(17):3016–22 (In Chinese).

    Google Scholar 

  22. Cataldo VD, Gibbons DL, Pérez-Soler R, Quintás-Cardama A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med. 2011;364(10):947–55.

    CAS  PubMed  Google Scholar 

  23. Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):625–35.

    CAS  PubMed  Google Scholar 

  24. Yu HA, Schoenfeld AJ, Makhnin A, et al. Effect of osimertinib and bevacizumab on progression-free survival for patients with metastatic EGFR-mutant lung cancers: a phase 1/2 single-group open-label trial. JAMA Oncol. 2020;6(7):1048–54.

    PubMed  Google Scholar 

  25. Qi C, Cui H, Chen D. Combination of osimertinib and bevacizumab as first-line treatment for patients with metastatic EGFR-mutant lung cancers. JAMA Oncol. 2020;6(12):1982.

    PubMed  Google Scholar 

  26. Zhao Y, Liu J, Cai X, et al. Efficacy and safety of first line treatments for patients with advanced epidermal growth factor receptor mutated, non-small cell lung cancer: systematic review and network meta-analysis. BMJ. 2019;367: l5460.

    PubMed  PubMed Central  Google Scholar 

  27. Turkes F, Chau I. Ramucirumab and its use in the treatment of hepatocellular carcinoma. Future Oncol (London, England). 2019;15(9):979–88.

    CAS  Google Scholar 

  28. Le X, Nilsson M, Goldman J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2021;16(2):205–15.

    CAS  Google Scholar 

  29. Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(12):1655–69.

    CAS  PubMed  Google Scholar 

  30. Nadal E, Horinouchi H, Shih J-Y, et al. RELAY, ramucirumab plus erlotinib versus placebo plus erlotinib in patients with untreated, epidermal growth factor receptor Mutation-Positive, metastatic non-small-cell lung cancer: safety profile and manageability. Drug Saf. 2022;45(1):45–64.

    CAS  PubMed  Google Scholar 

  31. Cao Y, Zhang W, Zhang J. Advances in the application of ramucirumab in molecularly targeted tumor therapy. China Pharmacy. 2017;28(11):1577–80 (In Chinese).

    Google Scholar 

  32. Camidge DR, Berge EM, Doebele RC, et al. A phase II, open-label study of ramucirumab in combination with paclitaxel and carboplatin as first-line therapy in patients with stage IIIB/IV non-small-cell lung cancer. J Thorac Oncol. 2014;9(10):1532–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Garon EB, Scagliotti GV, Gautschi O, et al. Exploratory analysis of front-line therapies in REVEL: a randomised phase 3 study of ramucirumab plus docetaxel versus docetaxel for the treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy. ESMO Open. 2020;5(1):e000567.

    PubMed  PubMed Central  Google Scholar 

  34. Padda SK, Reckamp KL. Combination of immunotherapy and antiangiogenic therapy in cancer-a rational approach. J Thoracic Oncol: Off Publ Int Assoc Study Lung Cancer. 2021;16(2):178–82.

    Google Scholar 

  35. Garon EB. Osimertinib plus ramucirumab: The best of both worlds? Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(4):905–7.

    CAS  Google Scholar 

  36. Herbst RS, Arkenau H-T, Santana-Davila R, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019;20(8):1109–23.

    CAS  PubMed  Google Scholar 

  37. Klempner SJ, Wainberg ZA. Ramucirumab plus pembrolizumab: can we make the maths work? Lancet Oncol. 2019;20(8):1041–3.

    PubMed  Google Scholar 

  38. Reckamp KL, Redman MW, Dragnev KH, et al. Phase II randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy-lung-MAP S1800A. J Clin Oncol Off J Am Soc Clin Oncol. 2022;40(21):2295–306.

    CAS  Google Scholar 

  39. Takeda M, Sakai K, Okamoto K, et al. Genome sequencing for nonsmall-cell lung cancer identifies a basis for nintedanib sensitivity. Ann Oncol Off J Eur Soc Med Oncol. 2016;27(4):748–50.

    CAS  Google Scholar 

  40. Gabasa M, Ikemori R, Hilberg F, Reguart N, Alcaraz J. Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br J Cancer. 2017;117(8):1128–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Doebele RC, Conkling P, Traynor AM, et al. A phase I, open-label dose-escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol Off J Eur So Med Oncol. 2012;23(8):2094–102.

    CAS  Google Scholar 

  42. Reck M, Kaiser R, Eschbach C, et al. A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol Off J Eur Soc Med Oncol. 2011;22(6):1374–81.

    CAS  Google Scholar 

  43. Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15(2):143–55.

    CAS  PubMed  Google Scholar 

  44. Tu J, Xu H, Ma L, et al. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Theranostics. 2022;12(2):747–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu J, Zhong H, Chu T, et al. Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur Respir J. 2019;53(3):1801562.

    CAS  PubMed  Google Scholar 

  46. Han B, Li K, Wang Q, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 2018;4(11):1569–75.

    PubMed  PubMed Central  Google Scholar 

  47. Chen XZ. Anlotinib for refractory advanced non-small cell lung cancer in China. JAMA Oncol. 2019;5(1):116–7.

    PubMed  Google Scholar 

  48. Zhou M, Chen X, Zhang H, et al. China national medical products administration approval summary: anlotinib for the treatment of advanced non-small cell lung cancer after two lines of chemotherapy. Cancer Commun (Lond). 2019;39(1):36.

    PubMed  Google Scholar 

  49. Fan P, Qiang H, Liu Z, et al. Effective low-dose anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol. 2022;13: 937924.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Zeng L, Li Y, et al. Anlotinib combined with PD-1 blockade for the treatment of lung cancer: a real-world retrospective study in China. Cancer Immunol Immunother CII. 2021;70(9):2517–28.

    CAS  PubMed  Google Scholar 

  51. Yang Y, Li L, Jiang Z, Wang B, Pan Z. Anlotinib optimizes anti-tumor innate immunity to potentiate the therapeutic effect of PD-1 blockade in lung cancer. Cancer Immunol Immunother CII. 2020;69(12):2523–32.

    CAS  PubMed  Google Scholar 

  52. Chu T, Zhong R, Zhong H, et al. Phase 1b study of sintilimab plus anlotinib as first-line therapy in patients with advanced NSCLC. J Thorac Oncol. 2021;16(4):643–52.

    CAS  PubMed  Google Scholar 

  53. Yuan M, Zhai Y, Men Y, et al. Anlotinib enhances the antitumor activity of high-dose irradiation combined with Anti-PD-L1 by potentiating the tumor immune microenvironment in murine lung cancer. Oxid Med Cell Longev. 2022;2022:5479491.

    PubMed  PubMed Central  Google Scholar 

  54. Xiang M, Yang X, Ren S, et al. Anlotinib combined with S-1 in third- or later-line stage IV non-small cell lung cancer treatment: a phase II clinical trial. Oncologist. 2021;26(12):e2130–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W, Deng P, Kong T, et al. Safety and efficacy of anlotinib in combination with standard chemotherapy as first-line treatment for extensive-stage small cell lung cancer: a multi-center, prospective study (ACTION-2). Lung Cancer (Amsterdam, Netherlands). 2022;173:43–8.

    CAS  PubMed  Google Scholar 

  56. Mukhopadhyay S, Pennell NA, Ali SM, et al. RET-rearranged lung adenocarcinomas with lymphangitic spread, psammoma bodies, and clinical responses to cabozantinib. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9(11):1714–9.

    CAS  Google Scholar 

  57. Leone JP, Duda DG, Hu J, et al. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. Breast Cancer Res Treat. 2020;179(1):113–23.

    CAS  PubMed  Google Scholar 

  58. Neal JW, Dahlberg SE, Wakelee HA, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17(12):1661–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang J, Chen H-J, Wang Z, et al. Osimertinib and cabozantinib combinatorial therapy in an EGFR-mutant lung adenocarcinoma patient with multiple MET secondary-site mutations after resistance to crizotinib. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2018;13(4):e49–53.

    Google Scholar 

  61. Sun TY, Niu X, Chakraborty A, Neal JW, Wakelee HA. Lengthy progression-free survival and intracranial activity of cabozantinib in patients with crizotinib and ceritinib-resistant ROS1-positive non-small cell lung cancer. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2019;14(2):e21–4.

    Google Scholar 

  62. Klempner SJ, Borghei A, Hakimian B, Ali SM, Ou S-HI. Intracranial activity of cabozantinib in MET exon 14-positive NSCLC with brain metastases. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2017;12(1):152–6.

    Google Scholar 

  63. Lu S, Li L, Luo Y, et al. A multicenter, open-label, randomized phase II controlled study of rh-endostatin (Endostar) in combination with chemotherapy in previously untreated extensive-stage small-cell lung cancer. J Thorac Oncol. 2015;10(1):206–11.

    CAS  PubMed  Google Scholar 

  64. Shi S, Wang R, Chen Y, et al. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. PLoS ONE. 2013;8(6): e65757.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen L, Tong F, Peng L, et al. Efficacy and safety of recombinant human endostatin combined with whole-brain radiation therapy in patients with brain metastases from non-small cell lung cancer. Radiother Oncol. 2022;174:44–51.

    CAS  PubMed  Google Scholar 

  66. Zhao X, Wen X, Wei W, et al. Predictors for the efficacy of Endostar combined with neoadjuvant chemotherapy for stage IIIA (N2) NSCLC. Cancer Biomark. 2017;21(1):169–77.

    PubMed  Google Scholar 

  67. Wang Z, Zhang H, Zhou C, et al. Real-world outcomes of various regimens of recombinant human endostatin combined with chemotherapy in non-driver gene mutation advanced non-small cell lung cancer. Cancer Med. 2019;8(4):1434–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi X, Dong X, Young S, et al. The impact of angiogenesis inhibitors on survival of patients with small cell lung cancer. Cancer Med. 2019;8(13):5930–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu J, Chen G, Niu K, et al. Efficacy and safety of recombinant human endostatin during peri-radiotherapy period in advanced non-small-cell lung cancer. Future Oncol (London, England). 2022;18(9):1077–87.

    CAS  Google Scholar 

  70. Wu J, Zhao X, Sun Q, et al. Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed Pharmacother Biomed Pharmacother. 2020;125:109746.

    CAS  PubMed  Google Scholar 

  71. Hamberg P, Verweij J, Sleijfer S. (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist. 2010;15(6):539–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Katakami N, Felip E, Spigel DR, et al. A randomized, open-label, multicenter, phase 3 study to compare the efficacy and safety of eribulin to treatment of physician’s choice in patients with advanced non-small cell lung cancer. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(9):2241–7.

    CAS  Google Scholar 

  73. Duda DG, Jain RK. Revisiting antiangiogenic multikinase inhibitors in the era of immune checkpoint blockade: the case of sorafenib. Can Res. 2022;82(20):3665–7.

    CAS  Google Scholar 

  74. Tiseo M, Franciosi V, Ardizzoni A. Multi-target inhibitors in non-small cell lung cancer (NSCLC). Ann Oncol Off J Eur Soc Med Oncol. 2006;17(2):55–7.

    Google Scholar 

  75. Zhao H, Yao W, Min X, et al. Apatinib plus gefitinib as first-line treatment in advanced EGFR-mutant NSCLC: the phase III ACTIVE Study (CTONG1706). J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2021;16(9):1533–46.

    CAS  Google Scholar 

  76. Zhang Z, Luo F, Zhang Y, et al. The ACTIVE study protocol: apatinib or placebo plus gefitinib as first-line treatment for patients with EGFR-mutant advanced non-small cell lung cancer (CTONG1706). Cancer Commun (London, England). 2019;39(1):69.

    Google Scholar 

  77. Wu F, Zhang S, Gao G, et al. Successful treatment using apatinib with or without docetaxel in heavily pretreated advanced non-squamous non-small cell lung cancer: a case report and literature review. Cancer Biol Ther. 2018;19(3):141–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ding L, Li Q-J, You K-Y, Jiang Z-M, Yao H-R. The use of apatinib in treating nonsmall-cell lung cancer: case report and review of literature. Medicine. 2016;95(20): e3598.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Baggstrom MQ, Socinski MA, Wang XF, et al. Maintenance sunitinib following initial platinum-based combination chemotherapy in advanced-stage IIIB/IV non-small cell lung cancer: a randomized, double-blind, placebo-controlled phase III study-CALGB 30607 (Alliance). J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer. 2017;12(5):843–9.

    Google Scholar 

  80. Cooper AJ, Kobayashi Y, Kim D, et al. Identification of a RAS-activating TMEM87A-RASGRF1 fusion in an exceptional responder to sunitinib with non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(15):4072–9.

    CAS  Google Scholar 

  81. Weng M-C, Li M-H, Chung JG, et al. Apoptosis induction and AKT/NF-κB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomed Pharmacother Biomed Pharmacother. 2019;116:109032.

    CAS  PubMed  Google Scholar 

  82. King JW, Lee S-M. Axitinib for the treatment of advanced non-small-cell lung cancer. Expert Opin Investig Drugs. 2013;22(6):765–73.

    CAS  PubMed  Google Scholar 

  83. Kozloff MF, Martin LP, Krzakowski M, et al. Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours. Br J Cancer. 2012;107(8):1277–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Twelves C, Chmielowska E, Havel L, et al. Randomised phase II study of axitinib or bevacizumab combined with paclitaxel/carboplatin as first-line therapy for patients with advanced non-small-cell lung cancer. Ann Oncol Off J Eur Soc Med Oncol. 2014;25(1):132–8.

    CAS  Google Scholar 

  85. Sun Q, Zhou J, Zhang Z, et al. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol Ther. 2014;15(12):1635–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu S, Chen G, Sun Y, et al. A Phase III, randomized, double-blind, placebo-controlled, multicenter study of fruquintinib in Chinese patients with advanced nonsquamous non-small-cell lung cancer: the FALUCA study. Lung Cancer (Amsterdam, Netherlands). 2020;146:252–62.

    PubMed  Google Scholar 

  87. Lu S, Chang J, Liu X, et al. Randomized, double-blind, placebo-controlled, multicenter phase II study of fruquintinib after two prior chemotherapy regimens in chinese patients with advanced nonsquamous non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(12):1207–17.

    CAS  Google Scholar 

  88. Garon EB, Ciuleanu T-E, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet (London, England). 2014;384(9944):665–73.

    CAS  PubMed  Google Scholar 

  89. Cheng G, Jiang X, Liu H, et al. Efficacy and safety of anlotinib in combination with chemotherapy in the second-line treatment of advanced non-small cell lung cancer. Mod Med Oncol. 2022;30(14):2534–8 (In Chinese).

    Google Scholar 

  90. Cortot AB, Audigier-Valette C, Molinier O, et al. Weekly paclitaxel plus bevacizumab versus docetaxel as second- or third-line treatment in advanced non-squamous non-small-cell lung cancer: Results of the IFCT-1103 ULTIMATE study. Eur J Cancer. 2020;131:27–36.

    CAS  PubMed  Google Scholar 

  91. Ayantunde AA, Parsons SL. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol Off J Eur Soc Med Oncol. 2007;18(5):945–9.

    CAS  Google Scholar 

  92. Zhao W-Y, Chen D-Y, Chen J-H, Ji Z-N. Effects of intracavitary administration of Endostar combined with cisplatin in malignant pleural effusion and ascites. Cell Biochem Biophys. 2014;70(1):623–8.

    CAS  PubMed  Google Scholar 

  93. Zhou Z, Li H, Hu D, Xie L. Clinical efficacy of bevacizumab combined with cisplatin in the treatment of malignant pleural effusion and ascites caused by lung cancer: a randomized trial. Ann Palliat Med. 2021;10(10):10575–83.

    PubMed  Google Scholar 

  94. Xiang Z, Deng X, He W, et al. Treatment of malignant pleural effusion in non-small cell lung cancer with VEGF-directed therapy. Ann Med. 2022;54(1):1357–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Masago K, Fujimoto D, Fujita S, et al. Response to bevacizumab combination chemotherapy of malignant pleural effusions associated with non-squamous non-small-cell lung cancer. Molecul Clin Oncol. 2015;3(2):415–9.

    Google Scholar 

  96. Fang S-C, Zhang H-T, Hu H-D, Wang C-Y, Zhang Y-M. Effect of Endostar combined with angiopoietin-2 inhibitor on malignant pleural effusion in mice. Med Oncol (Northwood, London, England). 2015;32(1):410.

    Google Scholar 

  97. Biaoxue R, Xiguang C, Hua L, Wenlong G, Shuanying Y. Thoracic perfusion of recombinant human endostatin (Endostar) combined with chemotherapeutic agents versus chemotherapeutic agents alone for treating malignant pleural effusions: a systematic evaluation and meta-analysis. BMC Cancer. 2016;16(1):888.

    PubMed  PubMed Central  Google Scholar 

  98. Chen Y, Mathy NW, Lu H. The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with non-small cell lung cancer (Review). Mol Med Rep. 2018;17(6):8019–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Marquez-Medina D, Popat S. Closing faucets: the role of anti-angiogenic therapies in malignant pleural diseases. Clin Trans Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mexico. 2016;18(8):760–8.

    CAS  Google Scholar 

  100. Li B. Clinical study on the inhibition of malignant pleural effusion in non-small cell lung cancer by high-dose endostar single agent thoracic perfusion. University of South China; 2021. (In Chinese).

    Google Scholar 

  101. Ma X, Yao Y, Yuan D, et al. Recombinant human endostatin endostar suppresses angiogenesis and lymphangiogenesis of malignant pleural effusion in mice. PLoS ONE. 2012;7(12): e53449.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo B, Chen Z, Zheng Q. Effectiveness of different doses of Endostar combined with cisplatin for the treatment of malignant pleural effusion in non-small cell lung cancer by thoracic perfusion. Qilu Medi J. 2016;31(02):148–51 (In Chinese).

    Google Scholar 

  103. He J, Gou J, Zhai M, Zheng X, et al. Evaluation of the efficacy of Endostar combined with intrapleural local administration of cisplatin in the treatment of malignant pleural effusion in non-small cell lung cancer. Int J Respir. 2016;36(15):1127–30 (In Chinese).

    Google Scholar 

  104. Kitamura K, Kubota K, Ando M, et al. Bevacizumab plus chemotherapy for advanced non-squamous non-small-cell lung cancer with malignant pleural effusion. Cancer Chemother Pharmacol. 2013;71(2):457–61.

    CAS  PubMed  Google Scholar 

  105. Jiang L, Li P, Gong Z, et al. Effective treatment for malignant pleural effusion and ascites with combined therapy of bevacizumab and cisplatin. Anticancer Res. 2016;36(3):1313–8.

    CAS  PubMed  Google Scholar 

  106. Zhou J. Meta-analysis of bevacizumab combined with chemotherapy intrathoracic administration for malignant thoracoabdominal effusion. Lanzhou University; 2020. (In Chinese).

    Google Scholar 

  107. Chen D, Song X, Shi F, et al. Greater efficacy of intracavitary infusion of bevacizumab compared to traditional local treatments for patients with malignant cavity serous effusion. Oncotarget. 2017;8(21):35262–71.

    PubMed  Google Scholar 

  108. Orecchia P, Conte R, Balza E, et al. Targeting Syndecan-1, a molecule implicated in the process of vasculogenic mimicry, enhances the therapeutic efficacy of the L19-IL2 immunocytokine in human melanoma xenografts. Oncotarget. 2015;6(35):37426–42.

    PubMed  PubMed Central  Google Scholar 

  109. Pisarsky L, Bill R, Fagiani E, et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 2016;15(6):1161–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Allen E, Miéville P, Warren CM, et al. Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep. 2016;15(6):1144–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Horvath L, Thienpont B, Zhao L, Wolf D, Pircher A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC): novel approaches and future outlook. Mol Cancer. 2020;19(1):141.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19(9):1114–23.

    CAS  PubMed  Google Scholar 

  113. Maniati E, Hagemann T. IL-17 mediates resistance to anti-VEGF therapy. Nat Med. 2013;19(9):1092–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly apologize to the scientists, researchers, and colleagues whose works were not cited because of space limitations.

Funding

Project was supported by Shanghai Municipal Health Commission (No. 202040332—HC.T); Shanghai Public Health Clinical Center (No. KY-GW-2021-16—HC.T); and Shanghai Jinshan District Science and Technology Commission (2022-WS-39—ZY.Z).

Author information

Authors and Affiliations

Authors

Contributions

XY contributed to manuscript writing and review. ZYZ was involved in data curation and analysis and study supervision. HCT contributed to formal analysis, results discussion, and manuscript revision. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Haicheng Tang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests to declare.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have agreed to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhao, Z. & Tang, H. Current status and future of anti-angiogenic drugs in lung cancer. Clin Exp Med 23, 2009–2023 (2023). https://doi.org/10.1007/s10238-023-01039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01039-8

Keywords

Navigation