Skip to main content

Advertisement

Log in

Advanced micro-/nanotechnologies for exosome encapsulation and targeting in regenerative medicine

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Exosomes, a subset of vesicles generated from cell membranes, are crucial for cellular communication. Exosomes' innate qualities have been used in recent studies to create nanocarriers for various purposes, including medication delivery and immunotherapy. As a result, a wide range of approaches has been designed to utilize their non-immunogenic nature, drug-loading capacity, or targeting ability. In this study, we aimed to review the novel methods and approaches in exosome engineering for encapsulation and targeting in regenerative medicine. We have assessed and evaluated each method's efficacy, advantages, and disadvantages and discussed the results of related studies. Even though the therapeutic role of non-allogenic exosomes has been demonstrated in several studies, their application has certain limitations as these particles are neither fully specific to target tissue nor tissue retainable. Hence, there is a strong demand for developing more efficient encapsulation methods along with more accurate and precise targeting methods, such as 3D printing and magnetic nanoparticle loading in exosomes, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request due to privacy/ethical restrictions.

References

  1. Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010;20(5):510–8.

    CAS  PubMed  Google Scholar 

  2. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim et Biophys Acta (BBA) Gen Subj. 2012;1820(7):940–8.

    CAS  Google Scholar 

  3. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3–22.

    Google Scholar 

  4. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15(1):80–8.

    CAS  PubMed  Google Scholar 

  5. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):1–9.

    Google Scholar 

  6. Toh WS, Lai RC, Hui JHP, Lim SK: MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol. 2017;67:56–64. https://doi.org/10.1016/j.semcdb.2016.11.008

  7. Sukma Dewi I, Celik S, Karlsson A, Hollander Z, Lam K, McManus J-W, Tebbutt S, Ng R, Keown P, McMaster R. Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res. 2017;113(5):440–52.

    PubMed  Google Scholar 

  8. Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res. 2018;196:1–16.

    CAS  PubMed  Google Scholar 

  9. Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, Yumashev AV, Shariatzadeh S, Motavalli R, Behzad F. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med. 2021;19(1):1–21.

    Google Scholar 

  10. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang H-G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release. 2021;329:894–906.

    CAS  PubMed  Google Scholar 

  12. Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics. 2021;13(1):122.

    PubMed  PubMed Central  Google Scholar 

  13. Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. 2021;22(2):684.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers. 2021;13(15):2529.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential applications of nanomaterials and technology for diabetic wound healing. Int J Nanomed. 2020;15:9717.

    CAS  Google Scholar 

  16. Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale. 2021;13(19):8740–50.

    CAS  PubMed  Google Scholar 

  17. Foyt DA, Norman MD, Yu TT, Gentleman E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Healthcare Mater. 2018;7(8):1700939.

    Google Scholar 

  18. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123(2):208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, Takakura Y. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.

    CAS  PubMed  Google Scholar 

  20. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–64.

    PubMed  Google Scholar 

  21. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–21.

    CAS  PubMed  Google Scholar 

  22. Elkhoury K, Koçak P, Kang A, Arab-Tehrany E, Ellis Ward J, Shin SR. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics. 2020;12(9):849.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736–47.

    CAS  PubMed  Google Scholar 

  24. Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13(9):10279–93.

    CAS  PubMed  Google Scholar 

  25. Sun M, Li Q, Yu H, Cheng J, Wu N, Shi W, Zhao F, Shao Z, Meng Q, Chen H. Cryo-self-assembled silk fibroin sponge as a biodegradable platform for enzyme-responsive delivery of exosomes. Bioact Mater. 2022;8:505–14.

    CAS  PubMed  Google Scholar 

  26. Zhao D, Yu Z, Li Y, Wang Y, Li Q, Han D. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. J Mol Histol. 2020;51(3):251–63.

    CAS  PubMed  Google Scholar 

  27. Fan J, Lee C-S, Kim S, Chen C, Aghaloo T, Lee M. Generation of small RNA-modulated exosome mimetics for bone regeneration. ACS Nano. 2020;14(9):11973–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Derkus B. Human cardiomyocyte-derived exosomes induce cardiac gene expressions in mesenchymal stromal cells within 3D hyaluronic acid hydrogels and in dose-dependent manner. J Mater Sci Mater Med. 2021;32(1):1–11.

    Google Scholar 

  29. Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, Wang Y, Yan B, Xie W, Liu F. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920–33.

    CAS  PubMed  Google Scholar 

  30. Chen CW, Wang LL, Zaman S, Gordon J, Arisi MF, Venkataraman CM, Chung JJ, Hung G, Gaffey AC, Spruce LA. Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovasc Res. 2018;114(7):1029–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q, Zhu L. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 2017;9(13):4430–8.

    CAS  PubMed  Google Scholar 

  32. Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomed. 2020;15:5911.

    CAS  Google Scholar 

  34. Li M, Ke Q-F, Tao S-C, Guo S-C, Rui B-Y, Guo Y-P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B. 2016;4(42):6830–41.

    CAS  PubMed  Google Scholar 

  35. Wu N, Zhang X, Li J, Gan Y. Targeting exosomal miRNA with pH-sensitive liposome coated chitosan-siRNA nanoparticles for inhibition of hepatocellular carcinoma metastasis. J Control Release Off J Control Release Soc. 2015;213: e82.

    Google Scholar 

  36. Yuan H, Li K, Li B, Lou X, Zhao Q, Zhang Y. Development of a novel elastic and macroporous chitosan hydrogel for wound healing application. J Control Release. 2015;100(213):e43–4.

    Google Scholar 

  37. Shi Q, Qian Z, Liu D, Sun J, Wang X, Liu H, Xu J, Guo X. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904.

    PubMed  PubMed Central  Google Scholar 

  38. Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, Shafei S, Amini E, Farzamfar S, Ai J. Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res Part A. 2020;108(11):2138–49.

    CAS  Google Scholar 

  39. Li Q, Gong S, Yao W, Yang Z, Wang R, Yu Z, Wei M. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Deliv. 2021;28(1):884–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, Dang R, Xu J, Zhang J, Wen N. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng. 2020;6(3):1590–602.

    CAS  PubMed  Google Scholar 

  41. Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study. J Biomed Mater Res Part A. 2020;108(3):545–56.

    CAS  Google Scholar 

  42. Wang C, Liang C, Wang R, Yao X, Guo P, Yuan W, Liu Y, Song Y, Li Z, Xie X. The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing. Biomater Sci. 2020;8(1):313–24.

    Google Scholar 

  43. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.

    CAS  PubMed  Google Scholar 

  44. Grauballe MB, Østergaard JA, Schou S, Flyvbjerg A, Holmstrup P. Effects of TNF-α blocking on experimental periodontitis and type 2 diabetes in obese diabetic Z ucker rats. J Clin Periodontol. 2015;42(9):807–16.

    CAS  PubMed  Google Scholar 

  45. Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, Liu L, Zhao W, Han Z, Kong D, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces. 2018;10(36):30081–91.

    CAS  PubMed  Google Scholar 

  46. Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, Lin Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact Mater. 2020;5(4):1113–26.

    PubMed  PubMed Central  Google Scholar 

  47. Liu W-z, Ma Z-j, Li J-r, Kang X-w. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther. 2021;12(1):1–15.

    Google Scholar 

  48. Wyndaele J-J. The management of neurogenic lower urinary tract dysfunction after spinal cord injury. Nat Rev Urol. 2016;13(12):705–14.

    PubMed  Google Scholar 

  49. Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, Gao J. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020;20(6):4298–305.

    CAS  PubMed  Google Scholar 

  50. Zhang K, Li J, Jin J, Dong J, Li L, Xue B, Wang W, Jiang Q, Cao Y. Injectable, anti-inflammatory and conductive hydrogels based on graphene oxide and diacerein-terminated four-armed polyethylene glycol for spinal cord injury repair. Mater Des. 2020;196: 109092.

    CAS  Google Scholar 

  51. Liu X, Kim JC, Miller AL, Waletzki BE, Lu L. Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury. New J Chem. 2018;42(21):17671–81.

    CAS  Google Scholar 

  52. Fan L, Liu C, Chen X, Zou Y, Wen H, Lu F, Luo Y, Tan G, Yu P, Chen D: Exosome-loaded conductive hydrogel with immune-modulating and neurogenesis-enhancing properties for synergistic spinal cord injury repair. 2020.

  53. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiong Y-Y, Gong Z-T, Tang R-J, Yang Y-J. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics. 2021;11(3):1046–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lv K, Li Q, Zhang L, Wang Y, Zhong Z, Zhao J, Lin X, Wang J, Zhu K, Xiao C. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics. 2019;9(24):7403.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Han C, Zhou J, Liu B, Liang C, Pan X, Zhang Y, Zhang Y, Wang Y, Shao L, Zhu B. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. Mater Sci Eng C. 2019;99:322–32.

    CAS  Google Scholar 

  58. Li Z, Zhang K, Zhao X, Kong D, Zhao Q, Liu N, Ma F. Enhanced therapeutic effects of MSC-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. Circ Res. 2018;123(Suppl_1):A490–A490.

    Google Scholar 

  59. Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, Martin I. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials. 2019;192:118–27.

    CAS  PubMed  Google Scholar 

  60. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Y, Ma Y, Zhang J, Yuan Y, Wang J. Exosomes: a novel therapeutic agent for cartilage and bone tissue regeneration. Dose-Response. 2019;17(4):1559325819892702.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou J, Liu H, Li S, Gong Y, Zhou M, Zhang J, Zhu G. Effects of human umbilical cord mesenchymal stem cells-derived exosomes on fracture healing in rats through the Wnt signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4954–60.

    CAS  PubMed  Google Scholar 

  63. Shi Y, Kang X, Wang Y, Bian X, He G, Zhou M, Tang K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monitor Int Med J Exp Clin Res. 2020;26:e923328–e923321.

    CAS  Google Scholar 

  64. Wang L, Wang J, Zhou X, Sun J, Zhu B, Duan C, Chen P, Guo X, Zhang T, Guo H. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Front Bioeng Biotechnol. 2020;8:564731.

    PubMed  PubMed Central  Google Scholar 

  65. Ayhan E, Kesmezacar H, Akgun I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthoped. 2014;5(3):351.

    Google Scholar 

  66. Hoeeg C, Dolatshahi-Pirouz A, Follin B. Injectable hydrogels for improving cardiac cell therapy—in vivo evidence and translational challenges. Gels. 2021;7(1):7.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Riau AK, Ong HS, Yam GH, Mehta JS. Sustained delivery system for stem cell-derived exosomes. Front Pharmacol. 2019;10:1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang L, Wang J, Zhou X, Sun J, Zhu B, Duan C, Chen P, Guo X, Zhang T, Guo H: A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Frontiers in bioengineering and biotechnology. 2020:1047.

  69. Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, Lee M. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater. 2012;8(5):1730–8.

    CAS  PubMed  Google Scholar 

  70. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17(12):1976.

    PubMed  PubMed Central  Google Scholar 

  71. Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1): 011508.

    PubMed  PubMed Central  Google Scholar 

  72. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018. https://doi.org/10.1177/2041731418802090

  73. Hu Y, Wu B, Xiong Y, Tao R, Panayi AC, Chen L, Tian W, Xue H, Shi L, Zhang X. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem Eng J. 2021;426:130634.

    CAS  Google Scholar 

  74. Chin SY, Dikshit V, Meera Priyadarshini B, Zhang Y. Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features. Micromachines (Basel). 2020;3011(7):658. https://doi.org/10.3390/mi11070658.

  75. Zhai M, Zhu Y, Yang M, Mao C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Advanced Science. 2020;7(19):2001334.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stegen S, Carmeliet G. The skeletal vascular system–breathing life into bone tissue. Bone. 2018;115:50–8.

    CAS  PubMed  Google Scholar 

  77. Ahn SH, Montero M, Odell D, Roundy S, Wright PK: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J. 2002.

  78. Dudek P. FDM 3D printing technology in manufacturing composite elements. Arch Metall Mater. 2013;58(4):1415–8.

    CAS  Google Scholar 

  79. Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190:97–110.

    PubMed  Google Scholar 

  81. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem cells. 2017;35(4):851–8.

    CAS  PubMed  Google Scholar 

  82. Chamberlain CS, Clements AE, Kink JA, Choi U, Baer GS, Halanski MA, Hematti P, Vanderby R. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells. 2019;37(5):652–62.

    CAS  PubMed  Google Scholar 

  83. Song H, Li X, Zhao Z, Qian J, Wang Y, Cui J, Weng W, Cao L, Chen X, Hu Y. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett. 2019;19(5):3040–8.

    CAS  PubMed  Google Scholar 

  84. De Luca L, Trino S, Laurenzana I, Lamorte D, Caivano A, Del Vecchio L, Musto P. Mesenchymal stem cell derived extracellular vesicles: A role in hematopoietic transplantation? Int J Mol Sci. 2017;18(5):1022.

    PubMed  PubMed Central  Google Scholar 

  85. Sharifzadeh G, Hosseinkhani H. Biomolecule-responsive hydrogels in medicine. Adv Healthcare Mater. 2017;6(24):1700801.

    Google Scholar 

  86. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16(2):57–67.

    CAS  PubMed  Google Scholar 

  87. Mello DCR, de Oliveira JR, Cairo CAA, de Brito Ramos LS, da Cruz Vegian MR, de Vasconcellos LGO, de Oliveira FE, de Oliveira LD, de Vasconcellos LMR. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. J Mater Sci Mater Med. 2019;30(9):1–12.

    CAS  Google Scholar 

  88. Li Y, Yang W, Li X, Zhang X, Wang C, Meng X, Pei Y, Fan X, Lan P, Wang C. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces. 2015;7(10):5715–24.

    CAS  PubMed  Google Scholar 

  89. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012;28(1):1–14.

    CAS  Google Scholar 

  90. Wu Z, Pu P, Su Z, Zhang X, Nie L, Chang Y. Schwann cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun. 2020;531(4):559–65.

    CAS  PubMed  Google Scholar 

  91. Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release. 2022;348:723–44.

    CAS  PubMed  Google Scholar 

  92. Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem. 2012;287(2):1397–405.

    CAS  PubMed  Google Scholar 

  93. Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11(7):3183.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen H, Wang L, Zeng X, Schwarz H, Nanda HS, Peng X, Zhou Y: Exosomes, a new star for targeted delivery. Front Cell Develop Biol. 2021:2827.

  95. Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol. 2020;40(6):804–20.

    CAS  PubMed  Google Scholar 

  96. Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target. 2020;28(2):129–41.

    CAS  PubMed  Google Scholar 

  97. Kim H, Yun N, Mun D, Kang J-Y, Lee S-H, Park H, Park H, Joung B. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun. 2018;499(4):803–8.

    CAS  PubMed  Google Scholar 

  98. Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15): e008737.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P. Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 2017;7(5):1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl Biochem Biotechnol. 2019;187(1):352–64.

    CAS  PubMed  Google Scholar 

  101. Peng H, Ji W, Zhao R, Yang J, Lu Z, Li Y, Zhang X. Exosome: a significant nano-scale drug delivery carrier. J Mater Chem B. 2020;8(34):7591–608.

    CAS  PubMed  Google Scholar 

  102. Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med. 2021;18(4):1–13.

    Google Scholar 

  103. Ramasubramanian L, Kumar P, Wang A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules. 2020;10(1):48.

    CAS  Google Scholar 

  104. Salunkhe S, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Control Release. 2020;326:599–614.

    CAS  PubMed  Google Scholar 

  105. Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–16.

    CAS  PubMed  Google Scholar 

  106. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, Huang N-P, Xiao Z-D, Lu Z-H, Tannous BA. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    CAS  PubMed  Google Scholar 

  107. Qi H, Liu C, Long L, Ren Y, Zhang S, Chang X, Qian X, Jia H, Zhao J, Sun J. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016;10(3):3323–33.

    CAS  PubMed  Google Scholar 

  108. Wang J, Li W, Zhang L, Ban L, Chen P, Du W, Feng X, Liu B-F. Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Appl Mater Interfaces. 2017;9(33):27441–52.

    CAS  PubMed  Google Scholar 

  109. Kumar S, Michael IJ, Park J, Granick S, Cho YK. Cloaked exosomes: biocompatible, durable, and degradable encapsulation. Small. 2018;14(34):1802052.

    Google Scholar 

  110. Shin M, Lee H, Lee M, Shin Y, Song J-J, Kang S-W, Nam D-H, Jeon EJ, Cho M, Do M. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat Biomed Eng. 2018;2(5):304–17.

    CAS  PubMed  Google Scholar 

  111. Lin Y, Zhang K, Zhang R, She Z, Tan R, Fan Y, Li X. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J Mater Chem B. 2020;8(28):5973–91.

    CAS  PubMed  Google Scholar 

  112. Xiao Y, Du J. Superparamagnetic nanoparticles for biomedical applications. J Mater Chem B. 2020;8(3):354–67.

    CAS  PubMed  Google Scholar 

  113. Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci. 2011;36(1):168–89.

    CAS  Google Scholar 

  114. Barjesteh T, Mansur S, Bao Y. Inorganic nanoparticle-loaded exosomes for biomedical applications. Molecules. 2021;26(4):1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee J-R, Park B-W, Kim J, Choo YW, Kim HY, Yoon J-K, Kim H, Hwang J-W, Kang M, Kwon SP. Nanovesicles derived from iron oxide nanoparticles–incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6(18):eaaz0952.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Li X, Wang Y, Shi L, Li B, Li J, Wei Z, Lv H, Wu L, Zhang H, Yang B. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnol. 2020;18(1):1–14.

    CAS  Google Scholar 

  117. Di H, Zeng E, Zhang P, Liu X, Zhang C, Yang J, Liu D. General approach to engineering extracellular vesicles for biomedical analysis. Anal Chem. 2019;91(20):12752–9.

    CAS  PubMed  Google Scholar 

  118. Zhang M, Vojtech L, Ye Z, Hladik F, Nance E. Quantum dot labeling and visualization of extracellular vesicles. ACS Appl Nano Mater. 2020;3(7):7211–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhuang M, Chen X, Du D, Shi J, Deng M, Long Q, Yin X, Wang Y, Rao L. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. Nanoscale. 2020;12(1):173–88.

    CAS  PubMed  Google Scholar 

  120. Zhuang M, Du D, Pu L, Song H, Deng M, Long Q, Yin X, Wang Y, Rao L. SPION-decorated exosome delivered BAY55-9837 targeting the pancreas through magnetism to improve the blood GLC response. Small. 2019;15(52):1903135.

    CAS  Google Scholar 

  121. Wang J, Chen P, Dong Y, Xie H, Wang Y, Soto F, Ma P, Feng X, Du W, Liu B-F. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials. 2021;276:121056.

    CAS  PubMed  Google Scholar 

  122. Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, Qiu X, Gooding JJ, Bai Y, Xiao J. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):1063–75.

    CAS  PubMed  Google Scholar 

  123. Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano. 2017;11(11):10883–93.

    CAS  PubMed  Google Scholar 

  124. Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep. 2019;9(1):1–9.

    CAS  Google Scholar 

  125. Sancho-Albero M, del Mar E-B, Beltran-Visiedo M, Fernández-Messina L, Sebastián V, Sánchez-Madrid F, Arruebo M, Santamaria J, Martin-Duque P. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale. 2019;11(40):18825–36.

    CAS  PubMed  Google Scholar 

  126. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.

    CAS  PubMed  Google Scholar 

  127. Haney MJ, Zhao Y, Jin YS, Li SM, Bago JR, Klyachko NL, Kabanov AV, Batrakova EV. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J Neuroimmune Pharmacol. 2020;15(3):487–500.

    PubMed  Google Scholar 

  128. Li Y-J, Wu J-Y, Wang J-M, Hu X-B, Cai J-X, Xiang D-X. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. 2020;101:519–30.

    CAS  PubMed  Google Scholar 

  129. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 2020;18(1):1–15.

    CAS  Google Scholar 

  131. Oskouie MN, Aghili Moghaddam NS, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. J Cell Physiol. 2019;234(6):8182–91.

    CAS  PubMed  Google Scholar 

  132. Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis. 2016;5(8):e250–e250.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41(6):835–42.

    CAS  PubMed  Google Scholar 

  134. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracel Vesicles. 2013;2(1):20360.

    Google Scholar 

  135. Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, de Juan Abad BL, George A, Belcher E, Zhu D, Mei X. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter. 2022;5(9):2960–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Willis GR, Kourembanas S, Mitsialis SA. Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med. 2017;4:63.

    PubMed  PubMed Central  Google Scholar 

  137. Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transpl. 2019;54(2):789–92.

    Google Scholar 

  138. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transpl. 2016;25(5):829–48.

    Google Scholar 

  139. Skuratovskaia D, Vulf M, Khaziakhmatova O, Malashchenko V, Komar A, Shunkin E, Gazatova N, Litvinova L. Exosome limitations in the treatment of inflammatory diseases. Curr Pharm Des. 2021;27(28):3105–21.

    CAS  PubMed  Google Scholar 

  140. Umezu T, Imanishi S, Azuma K, Kobayashi C, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv. 2017;1(13):812–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med. 2017;2(2):170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li M, Li S, Du C, Zhang Y, Li Y, Chu L, Han X, Galons H, Zhang Y, Sun H. Exosomes from different cells: characteristics, modifications, and therapeutic applications. Eur J Med Chem. 2020;207: 112784.

    CAS  PubMed  Google Scholar 

  143. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):1–19.

    Google Scholar 

  144. Chen H, Xue R, Huang P, Wu Y, Fan W, He X, Dong Y, Liu C. Modified exosomes: a good transporter for miRNAs within stem cells to treat ischemic heart disease. J Cardiovasc Transl Res. 2022;28:1–10.

    CAS  Google Scholar 

  145. Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, Zempleni J. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep. 2018;8(1):1–11.

    CAS  Google Scholar 

  146. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng Z-B, Wang B, Zhang L. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhou X, Li Z, Sun W, Yang G, Xing C, Yuan L. Delivery efficacy differences of intravenous and intraperitoneal injection of exosomes: Perspectives from tracking dye labeled and MiRNA encapsulated exosomes. Curr Drug Deliv. 2020;17(3):186–94.

    CAS  PubMed  Google Scholar 

  148. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, Ströbel T, Breakefield XO, Saydam O. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther. 2013;21(1):101–8.

    CAS  PubMed  Google Scholar 

  149. Hwang DW, Jo MJ, Lee JH, Kang H, Bao K, Hu S, Baek Y, Moon HG, Lee DS, Kashiwagi S. Chemical modulation of bioengineered exosomes for tissue-specific biodistribution. Adv Therap. 2019;2(11):1900111.

    CAS  Google Scholar 

  150. Popowski KD, Dinh PUC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID-19 and respiratory viruses. View. 2021;2(3):20200186.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all the contributions from the Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences.

Funding

This study was carried out in authors own capacity, and this study was not funded by any governmental organization and the authors themselves financed this study.

Author information

Authors and Affiliations

Authors

Contributions

HTG did manuscript composure, conceptualization, and visualization. SPB done manuscript composure and visualization. AA provided manuscript composure, revision and editing. ZKZ, AH-T, and KH were involved in manuscript composure. AH revised and edited the manuscript. HAT contributed to editing, revision, scientific supervision, and conceptualization. SD and MAT edited and revised the article.

Corresponding author

Correspondence to Hossein Ahmadi Tafti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have consent for publication of the article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashak Golroudbari, H., Banikarimi, S.P., Ayati, A. et al. Advanced micro-/nanotechnologies for exosome encapsulation and targeting in regenerative medicine. Clin Exp Med 23, 1845–1866 (2023). https://doi.org/10.1007/s10238-023-00993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-00993-7

Keywords

Navigation