Skip to main content

Advertisement

Log in

Evaluation and validation of the prognostic value of platelet indices in patients with leukemia

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Platelets (PLTs) are believed to play a role in the process by which tumors can accelerate their growth rate, as well as offer the physical and mechanical support necessary to evade the immunological system and metastasis. There is, however, no literature available if PLTs have a role in leukemia. It is significant for PLTs to play a part in hematological malignancies from a therapeutic standpoint and to have the capacity to serve as a prognostic marker in the evolution of leukemia. This is because PLTs play a crucial role in the development of cancer and tumors. In this study, it will be shown that PLT count can be used to predict long-term prognosis after chemotherapy especially in the case of acute myeloid leukemia patients. Furthermore, low PLT-to-lymphocyte ratio and mean PLT volume, as well as high PLT distribution width, are associated with poor prognosis and may represent a novel independent prognostic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jain A, Jain A, Malhotra P. Re-defining prognosis of hematological malignancies by dynamic response assessment methods: lessons learnt in chronic myeloid leukemia, hodgkin lymphoma, diffuse large B cell lymphoma and multiple myeloma. Indian J Hematol Blood Transfus. 2020;36(3):447–57.

    PubMed  Google Scholar 

  2. Khave LJ, Zafari P, Pirsalehi A, et al. Association between thrombocytopenia and platelet profile with morbidity/mortality of severe and non-severe COVID-19 patients. Rev Assoc Med Bras. 2021;67:1670–5.

    PubMed  Google Scholar 

  3. He X, Zhu Y, Yang L, et al. MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021;8(9):2003535.

    CAS  Google Scholar 

  4. Yang L, Zhang H, Yang X, et al. Prognostic prediction of cytogenetically normal acute myeloid leukemia based on a gene expression model. Front Oncol. 2021;11:1.

    Google Scholar 

  5. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol. 2018;93(6):824–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang D, Zhao R, Qu Y-Y, et al. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep. 2018;25(2):398–412.

    CAS  PubMed  Google Scholar 

  7. Samimi Z, Kardideh B, Zafari P, et al. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep. 2019;46(6):6353–60.

    CAS  PubMed  Google Scholar 

  8. Shaw JL, Nielson CM, Park JK, Marongiu A, Soff GA. The incidence of thrombocytopenia in adult patients receiving chemotherapy for solid tumors or hematologic malignancies. Eur J Haematol. 2021;106(5):662–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. An overview of the role of platelets in angiogenesis, apoptosis and autophagy in chronic myeloid leukaemia. Cancer Cell Int. 2017;17(1):89.

    PubMed  PubMed Central  Google Scholar 

  10. Bumbea H, Vladareanu AM, Dumitru I, et al. Platelet defects in acute myeloid leukemia-potential for hemorrhagic events. J Clin Med. 2021;11(1):118.

    PubMed  PubMed Central  Google Scholar 

  11. Gao A, Gong Y, Zhu C, et al. Bone marrow endothelial cell-derived interleukin-4 contributes to thrombocytopenia in acute myeloid leukemia. Haematologica. 2019;104(10):1950–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Z, Teng M, Jiang Y, et al. YTHDF1 negatively regulates treponema pallidum-induced inflammation in THP-1 macrophages by promoting SOCS3 translation in an m6A-dependent manner. Front Immunol. 2022;13:1.

    Google Scholar 

  13. McCrae K. Immune thrombocytopenia: no longer “idiopathic.” Cleve Clin J Med. 2011;78(6):358–73.

    PubMed  PubMed Central  Google Scholar 

  14. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M. Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacology. 2022;1:1–17.

    Google Scholar 

  15. Jiang Y, Song J, Wang N, et al. Rituximab-induced acute thrombocytopenia in patients with splenomegaly B Cell lymphoma: an underdiagnosed but severe complication. Cancer Biol Ther. 2020;21(11):1060–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan Y, editor Clinical Effect of Wenyang Tongyu Decoction on Hypercoagulability of Gynecological Tumor in Literature Professionals. Eur J Gynaecol Oncology; 2022: MRE Press 14 Robinson RD# 08–01A Far East Finance, Singapore, Singapore.

  17. Xue F, Cheng J, Liu Y, et al. Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice. Signal Transduct Target Ther. 2022;7(1):1–16.

    Google Scholar 

  18. Bhattacharjee S, Banerjee M. Immune thrombocytopenia secondary to COVID-19: a systematic review. SN Compr Clin Med. 2020;2(11):2048–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Omidi N, Arabloo J, Rezapour A, et al. Burden of hypertensive heart disease in Iran during 1990–2017: findings from the Global Burden of Disease study 2017. PLoS ONE. 2021;16(9): e0257617.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pippucci T, Savoia A, Perrotta S, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet. 2011;88(1):115–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moriyama T, Metzger ML, Wu G, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 2015;16(16):1659–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Paola J, Porter CC. ETV6-related thrombocytopenia and leukemia predisposition. Blood. 2019;134(8):663–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Latger-Cannard V, Philippe C, Bouquet A, et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis. 2016;11(1):1–15.

    Google Scholar 

  24. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Catani MV, Savini I, Tullio V, Gasperi V. The, “Janus Face” of Platelets in Cancer. Int J Mol Sci. 2020;21(3):1.

    Google Scholar 

  26. Wang D, Wang F, Shi K-H, et al. Lower circulating folate induced by a fidgetin intronic variant is associated with reduced congenital heart disease susceptibility. Circulation. 2017;135(18):1733–48.

    CAS  PubMed  Google Scholar 

  27. Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.

    CAS  PubMed  Google Scholar 

  28. Chen L, He M, Zhang M, et al. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther. 2021;226: 107868.

    CAS  PubMed  Google Scholar 

  29. Feng Y, Li F, Yan J, et al. Pan-cancer analysis and experiments with cell lines reveal that the slightly elevated expression of DLGAP5 is involved in clear cell renal cell carcinoma progression. Life Sci. 2021;287: 120056.

    CAS  PubMed  Google Scholar 

  30. Troxler M, Dickinson K, Homer-Vanniasinkam S. Platelet function and antiplatelet therapy. J Br Surg. 2007;94(6):674–82.

    CAS  Google Scholar 

  31. Gao Y, Chen S, Vafaei S, Zhong X. Tumor-infiltrating immune cell signature predicts the prognosis and chemosensitivity of patients with pancreatic ductal adenocarcinoma. Front Oncol. 2020;10: 557638.

    PubMed  PubMed Central  Google Scholar 

  32. Qu Y-Y, Zhao R, Zhang H-L, et al. Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Can Res. 2020;80(2):319–33.

    CAS  Google Scholar 

  33. Jin K, Yan Y, Chen M, et al. Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmol. 2022;100(2):e512–20.

    PubMed  Google Scholar 

  34. Xu S, Tao H, Cao W, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 2021;6(1):1–13.

    Google Scholar 

  35. Kato Y, Kaneko MK, Kunita A, et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 2008;99(1):54–61.

    CAS  PubMed  Google Scholar 

  36. Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 2018;9:1371.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Yao C-F, Xu F-J, et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun. 2019;10(1):1–16.

    Google Scholar 

  38. Suzuki-Inoue K, Fuller GL, García Á, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–9.

    CAS  PubMed  Google Scholar 

  39. Bauer B, Steinle A. HemITAM: a single tyrosine motif that packs a punch. Science signaling. 2017;10(508):3676.

    Google Scholar 

  40. Iranshahi N, Assar S, Amiri SM, et al. Decreased gene expression of epstein-barr virus-induced gene 3 (EBI-3) may contribute to the pathogenesis of rheumatoid arthritis. Immunol Invest. 2019;48(4):367–77.

    CAS  PubMed  Google Scholar 

  41. Omidi N, Kashani BS, Piranfar MA, et al. The correlation of diastolic dysfunction with TIMI frame count in patients with chronic stable angina pectoris. Tehran Univ Med J. 2012;70(9):1.

    Google Scholar 

  42. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018;11(1):125.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takemoto A, Miyata K, Fujita N. Platelet-activating factor podoplanin: from discovery to drug development. Cancer Metastasis Rev. 2017;36(2):225–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Duan C, Deng H, Xiao S, et al. Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol. 2022;32(1):702–13.

    PubMed  Google Scholar 

  45. Martín-Villar E, Megías D, Castel S, et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci. 2006;119(21):4541–53.

    PubMed  Google Scholar 

  46. Nash G, Turner L, Scully M, Kakkar A. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.

    CAS  PubMed  Google Scholar 

  47. Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol. 2013;117:1–38.

    CAS  PubMed  Google Scholar 

  48. Sabrkhany S, Griffioen AW. Oudeegbrink MG (2011) The role of blood platelets in tumor angiogenesis. Biochimica et Biophysica Acta (BBA) Rev Cancer. 1815;2:189–96.

    Google Scholar 

  49. Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11: 599602.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: A model disease of the past, present and future. Cells. 2021;10(1):117.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Akay OM, Mutlu F, Gülbaş Z. Platelet dysfunction in patients with chronic myeloid leukemia: does imatinib mesylate improve it? Turk J Hematol. 2016;33(2):127.

    CAS  Google Scholar 

  52. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood J Am Soc Hematol. 2016;127(20):2391–405.

    CAS  Google Scholar 

  53. Cruz N, Mencia-Trinchant N, Hassane D, Guzman M. Minimal residual disease in acute myelogenous leukemia. Int J Lab Hematol. 2017;39:53–60.

    PubMed  PubMed Central  Google Scholar 

  54. Chen X, Xie H, Wood BL, et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol. 2015;33(11):1258–64.

    PubMed  Google Scholar 

  55. Jaso J, Wang S, Jorgensen J, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transpl. 2014;49(9):1129–38.

    CAS  Google Scholar 

  56. Kirby E, Markert R, Marinella M. Prognostic value of initial blood cell counts in acute myeloid leukemia. Blood. 2020;136:1.

    Google Scholar 

  57. Mangaonkar A, Xu H, Mohsin J, et al. Prognostic value of complete remission with superior platelet counts in acute myeloid leukemia. J Community Support Oncol. 2016;14(2):66–71.

    CAS  PubMed  Google Scholar 

  58. Wang Y, Wang H, Wang W, et al. Prognostic value of platelet recovery degree before and after achieving minimal residual disease negative complete remission in acute myeloid leukemia patients. BMC Cancer. 2020;20(1):732.

    PubMed  PubMed Central  Google Scholar 

  59. Wen X, Li R, Zhang X, et al. Early platelet elevation after complete remission as a prognostic marker of favourable outcomes in favourable- and intermediate-risk acute myeloid leukaemia: a retrospective study. J Clin Lab Anal. 2022;36(2): e24221.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mangaonkar A, Mohsin J, Mansour J, et al. Day 30 platelet count as a prognostic marker of survival in acute myeloid leukemia. Blood. 2014;124(21):3684.

    Google Scholar 

  61. Zhang Y, Gu H, Chen Q, et al. Low platelet counts at diagnosis predict better survival for patients with intermediate-risk acute myeloid leukemia. Acta Haematol. 2020;143(1):9–18.

    PubMed  Google Scholar 

  62. Zhu HB, Zhao MF, Li YM, et al. Relationship between platelet count and prognosis of newly diagnosed patients with acute myeloid leukemia after initial induction chemotherapy. Chin Gen Pract. 2016;19:3528–33.

    Google Scholar 

  63. Schnell BR, Seipel K, Bacher U, et al. Rebound thrombocytosis after induction chemotherapy is a strong biomarker for favorable outcome in AML patients. HemaSphere. 2019;3(2): e180.

    PubMed  PubMed Central  Google Scholar 

  64. Zhang Q, Dai K, Bi L, et al. Pretreatment platelet count predicts survival outcome of patients with de novo non-M3 acute myeloid leukemia. PeerJ. 2017;5:e4139.

    PubMed  PubMed Central  Google Scholar 

  65. Trafalis DT, Poulakidas E, Kapsimali V, et al. Platelet production and related pathophysiology in acute myelogenous leukemia at first diagnosis: Prognostic implications. Oncol Rep. 2008;19(4):1021–6.

    PubMed  Google Scholar 

  66. Tığlıoğlu M, Albayrak M, Doğan S, et al. Mean platelet volume is a predictive and prognostic marker for patients with acute myeloid leukemia: a two-center retrospective analysis. Leuk Lymphoma. 2021;62(11):2755–61.

    PubMed  Google Scholar 

  67. Beyan C. Mean platelet volume may not be a predictive and prognostic marker in patients with acute myeloid leukemia. 2021.

  68. Jackson S, Carter J. Platelet volume: laboratory measurement and clinical application. Blood Rev. 1993;7(2):104–13.

    CAS  PubMed  Google Scholar 

  69. Beyan C, Beyan E. Were the measurements standardized sufficiently in published studies about mean platelet volume? Blood Coag Fibrinol. 2017;28(3):234–6.

    Google Scholar 

  70. Lancé MD, van Oerle R, Henskens YM, Marcus MA. Do we need time adjusted mean platelet volume measurements? Lab Hematol. 2010;16(3):28–31.

    PubMed  Google Scholar 

  71. Noris P, Melazzini F, Balduini CL. New roles for mean platelet volume measurement in the clinical practice? Platelets. 2016;27(7):607–12.

    CAS  PubMed  Google Scholar 

  72. Zeidler L, Zimmermann M, Möricke A, et al. Low platelet counts after induction therapy for childhood acute lymphoblastic leukemia are strongly associated with poor early response to treatment as measured by minimal residual disease and are prognostic for treatment outcome. Haematologica. 2012;97(3):402–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hara T, Mizuno Y, Ikuno Y, et al. Acute leukemia with normal platelet count at diagnosis. Acta Paediatr Jpn. 1990;32(5):515–8.

    CAS  PubMed  Google Scholar 

  74. Zhang A-L, Chen X-J, Zou Y, et al. Clinical features and prognosis of children with acute lymphoblastic leukemia and different platelet levels. Chin J Contemp Pediat. 2019;21(8):766–71.

    Google Scholar 

  75. Fattahi A, Lotfali E, Masoumi-Asl H, et al. Candidemia and its risk factors in neonates and children. Arch Pediat Infect Dis. 2020;8(4):1–5.

    Google Scholar 

  76. Gizhlaryan M, Mesrobian A, Tamamyan G, et al. Chemotherapy-induced thrombocytopenia in pediatric acute lymphoblastic leukemia: A single-institution report. New Armenian Medical Journal. 2021;15(1):91–4.

    Google Scholar 

  77. Srisurapanont K, Prakalapakorn W, Sutamworarot C, et al. Pretreatment grade 4 thrombocytopenia is an independent prognostic factor in adult acute lymphoblastic leukemia: an extended analysis of a single-center retrospective study. Hematology. 2021;26(1):26–30.

    CAS  PubMed  Google Scholar 

  78. Dai Q, Shi R, Zhang G, et al. Combined use of peripheral blood blast count and platelet count during and after induction therapy to predict prognosis in children with acute lymphoblastic leukemia. Medicine. 2021;100(15):1.

    Google Scholar 

  79. Shimabukuro-Vornhagen A, Rothe A, Nogova L, et al. Improvement of platelet dysfunction in chronic myelogenous leukemia following treatment with imatinib: a case report. J Med Case Rep. 2011;5:215.

    PubMed  PubMed Central  Google Scholar 

  80. Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. Ex vivo platelet morphology assessment of chronic myeloid leukemia patients before and after Imatinib treatment. Microsc Res Tech. 2022;85(6):2222–33.

    CAS  PubMed  Google Scholar 

  81. Suttorp M, Knoefler R, Deutsch H, et al. High Platelet counts, thrombosis, bleeding signs, and acquired von willebrand syndrome at diagnosis of pediatric chronic myeloid leukemia. Blood. 2019;134:4152.

    Google Scholar 

  82. Bakouny Z, Rassy EE, Yared F, et al. Is there a role for the platelet-to-lymphocyte ratio in chronic lymphocytic leukemia? Future Sci OA. 2018;4(10):344.

    Google Scholar 

  83. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood J Am Soc Hematol. 2008;111(12):5446–56.

    CAS  Google Scholar 

  84. Muñoz-Novas C, Poza-Santaella M, González-Gascón Y Marín I, et al. The International Prognostic Index for Patients with Chronic Lymphocytic Leukemia Has the Higher Value in Predicting Overall Outcome Compared with the Barcelona-Brno Biomarkers Only Prognostic Model and the MD Anderson Cancer Center Prognostic Index. Biomed Res Int. 2018;2018:9506979-.

  85. Masternak M, Puła B, Knap J, et al. Mean platelet volume has prognostic value in chronic lymphocytic leukemia. Cancer Manag Res. 2020;12:9977.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Templeton AJ, Ace O, McNamara MG, et al. Prognostic role of platelet to lymphocyte ratio in solid tumors: a systematic review and meta-AnalysisPrognostic role of PLR in solid tumors. Cancer Epidemiol Biomark Prev. 2014;23(7):1204–12.

    CAS  Google Scholar 

  87. El-Ashwah S, Denewer M, Niazy N, Mortada M, Azmy E. Low platelet to lymphocyte ratio and high platelet distribution width have an inferior outcome in chronic lymphocytic leukaemia patients. Nowotwory J Oncol. 2020;70(4):121–6.

    Google Scholar 

  88. Dmitrieva EA, Nikitin EA, Ignatova AA, et al. Platelet function and bleeding in chronic lymphocytic leukemia and mantle cell lymphoma patients on ibrutinib. J Thromb Haemost. 2020;18(10):2672–84.

    CAS  PubMed  Google Scholar 

  89. Saygin C, Godley LA. Genetics of myelodysplastic syndromes. Cancers. 2021;13(14):3380.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood J Am Soc Hematol. 1997;89(6):2079–88.

    CAS  Google Scholar 

  91. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood J Am Soc Hematol. 2012;120(12):2454–65.

    CAS  Google Scholar 

  92. Shi Z, Li B, Huang H, et al. Prognostic impact of red blood cell distribution width in myelodysplastic syndromes. Br J Haematol. 2019;186(2):352–5.

    PubMed  PubMed Central  Google Scholar 

  93. Teras LR, Patel AV, Carter BD, et al. Anthropometric factors and risk of myeloid leukaemias and myelodysplastic syndromes: a prospective study and meta-analysis. Br J Haematol. 2019;186(2):243–54.

    CAS  PubMed  Google Scholar 

  94. Ogawa S. Genetics of MDS. Blood J Am Soc Hematol. 2019;133(10):1049–59.

    CAS  Google Scholar 

  95. Bessman J, Williams L, Gilmer P. The inverse relation of platelet size and count in normal subjects, and an artifact of other particles mean platelet volume. Am J Clin Pathol. 1981;76:289–93.

    CAS  PubMed  Google Scholar 

  96. Chen Q, Chen Y, Zhang Y, et al. Prognostic impact of platelet-large cell ratio in myelodysplastic syndromes. Front Oncol. 2022;12:1.

    Google Scholar 

  97. Strapatsas J, Barbulescu EC, Lauseker M, et al. Influence of platelet count at diagnosis and during the course of disease on prognosis in MDS patients. Ann Hematol. 2021;100(10):2575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Al Ameri A, Jabbour E, Garcia-Manero G, et al. Significance of thrombocytopenia in myelodysplastic syndromes: associations and prognostic implications. Clin Lymphoma Myeloma Leuk. 2011;11(2):237–41.

    PubMed  Google Scholar 

  99. Itzykson R, Crouch S, Travaglino E, et al. Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes. Blood Adv. 2018;2(16):2079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YL, and TZh contributed to the idea design and literature search. ShW, and HX wrote parts of the manuscript. FL, and BZh contributed to designing the figures.

Corresponding author

Correspondence to Tingting Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, S., Xiao, H. et al. Evaluation and validation of the prognostic value of platelet indices in patients with leukemia. Clin Exp Med 23, 1835–1844 (2023). https://doi.org/10.1007/s10238-022-00985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00985-z

Keywords

Navigation