Skip to main content

Advertisement

Log in

Phenotypic and functional characterisation of locally produced natural killer cells ex vivo expanded with the K562-41BBL-mbIL21 cell line

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

We characterised the expansion, phenotype and functional activity of natural killer (NK) cells obtained for a clinical trial. Nineteen expansion procedures were performed to obtain NK cell products for 16 patients. NK cells were expanded ex vivo from haploidentical donor peripheral blood mononuclear cells in the presence of the locally generated feeder cell line K-562 with ectopic expression of 4-1BBL and mbIL-21. The median duration of expansion was 18 days (interquartile range 15–19). The median number of live cells yielded was 2.26 × 109 (range 1.6–3.4 × 109) with an NK content of 96.6% (range 95.1–97.9%). The median NK cell fold expansion was 171 (range 124–275). NK cell fold expansion depended on the number of seeded NK cells, the initial level of C-myc expression and the initial number of mature and immature NK cells. The majority of expanded NK cells had the phenotype of immature activated cells (NKG2A + , double bright CD56 +  + CD16 +  + , CD57-) expressing NKp30, NKp44, NKp46, NKG2D, CD69, HLA-DR and CD96. Despite the expression of exhaustion markers, expanded NK cells exhibited high cytolytic activity against leukaemia cell lines, high degranulation activity and cytokine production. There was a noted decrease in the functional activity of NK cells in tests against the patient’s blasts.

In conclusion, NK cells obtained by ex vivo expansion with locally generated K562-41BBL-mbIL21 cells had a relatively undifferentiated phenotype and enhanced cytolytic activity against cancer cell lines. Expansion of NK cells with feeder cells yielded a sufficient quantity of the NK cell product to reach high cell doses or increase the frequency of cell infusions for adoptive immunotherapy. Registered at clinicaltrials.gov as NCT04327037.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse moloney leukemia cells. characteristics of the killer cell. Eur J Immunol. 1975;5(2):117. https://doi.org/10.1002/eji.1830050209.

    Article  CAS  PubMed  Google Scholar 

  2. Suen WC, Lee WY, Leung KT, Pan XH, Li G. Natural killer cell-based cancer immunotherapy: A review on 10 years completed clinical trials. Cancer Invest. 2018;36(8):431–57. https://doi.org/10.1080/07357907.2018.1515315.

    Article  CAS  PubMed  Google Scholar 

  3. Choucair K, Duff JR, Cassidy CS, Albrethsen MT, Kelso JD, Lenhard A, Staats H, Patel R, Brunicardi FC, Dworkin L, Nemunaitis J. Natural killer cells: A review of biology, therapeutic potential and challenges in treatment of solid tumors. Future Oncol. 2019;15:3053–69. https://doi.org/10.2217/fon-2019-0116.

    Article  CAS  PubMed  Google Scholar 

  4. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021;14:7. https://doi.org/10.1186/s13045-020-01014-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ragoonanan D, Khazal SJ, Abdel-Azim H, McCall D, Cuglievan B, Tambaro FP, Ahmad AH, Rowan CM, Gutierrez C, Schadler K, Li S, Di Nardo M, Chi L, Gulbis AM, Shoberu B, Mireles ME, McArthur J, Kapoor N, Miller J, Fitzgerald JC, Tewari P, Petropoulos D, Gill JB, Duncan CN, Lehmann LE, Hingorani S, Angelo JR, Swinford RD, Steiner ME, Hernandez Tejada FN, Martin PL, Auletta J, Choi SW, Bajwa R, Dailey Garnes N, Kebriaei P, Rezvani K, Wierda WG, Neelapu SS, Shpall EJ, Corbacioglu S, Mahadeo KM. Diagnosis, grading and management of toxicities from immunotherapies in children, adolescents and young adults with cancer. Nat Rev Clin Oncol. 2021;18:435–53. https://doi.org/10.1038/s41571-021-00474-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parisi S, Lecciso M, Ocadlikova D, Salvestrini V, Ciciarello M, Forte D, Corradi G, Cavo M, Curti A. The more, the better: “Do the right thing” for natural killer immunotherapy in acute myeloid leukemia. Front Immunol. 2017;8:1330. https://doi.org/10.3389/fimmu.2017.01330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19:200–18. https://doi.org/10.1038/s41573-019-0052-1.

    Article  CAS  PubMed  Google Scholar 

  8. Lee DA. Cellular therapy: Adoptive immunotherapy with expanded natural killer cells. Immunol Rev. 2019;290:85–99. https://doi.org/10.1111/imr.12793.

    Article  CAS  PubMed  Google Scholar 

  9. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE. 2012;7:e30264. https://doi.org/10.1371/journal.pone.0030264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vashkevich EP, Migas AA, Meleshko AN, Matveenko MA, Strushkevich NV, Shman TV. Expansion and activation of human natural killer cells ex vivo in the presence of transgenic feeder cells. Cell Tiss Biol. 2020;14:365–71. https://doi.org/10.1134/S1990519X20050090.

    Article  Google Scholar 

  11. Uphoff CC, Drexler HG. Detecting mycoplasma contamination in cell cultures by polymerase chain reaction. In: Cree I, editor. Cancer cell culture methods in molecular biology. Humana Press; 2011. https://doi.org/10.1007/978-1-61779-080-5_8.

    Chapter  Google Scholar 

  12. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7. https://doi.org/10.1182/blood-2004-07-2974.

    Article  CAS  PubMed  Google Scholar 

  13. Bachanova V, Burns LJ, McKenna DH, Curtsinger J, Panoskaltsis-Mortari A, Lindgren BR, Cooley S, Weisdorf D, Miller JS. Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother. 2010;59:1739–44. https://doi.org/10.1007/s00262-010-0896-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi I, Yoon SR, Park SY, Kim H, Jung SJ, Jang YJ, Kang M, Yeom YI, Lee JL, Kim DY, Lee YS, Kang YA, Jeon M, Seol M, Lee JH, Lee JH, Kim HJ, Yun SC, Lee KH. Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: A dose-escalation study. Biol Blood Marrow Transplant. 2014;20:696–704. https://doi.org/10.1016/j.bbmt.2014.01.031.

    Article  CAS  PubMed  Google Scholar 

  15. Curti A, Ruggeri L, Parisi S, Bontadini A, Dan E, Motta MR, Rizzi S, Trabanelli S, Ocadlikova D, Lecciso M, Giudice V, Fruet F, Urbani E, Papayannidis C, Martinelli G, Bandini G, Bonifazi F, Lewis RE, Cavo M, Velardi A, Lemoli RM. Larger size of donor alloreactive nk cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res. 2016;22:1914–21. https://doi.org/10.1158/1078-0432.CCR-15-1604.

    Article  CAS  PubMed  Google Scholar 

  16. Silla L, Valim V, Pezzi A, da Silva M, Wilke I, Nobrega J, Vargas A, Amorin B, Correa B, Zambonato B, Scherer F, Merzoni J, Sekine L, Huls H, Cooper LJ, Paz A, Lee DA. Adoptive immunotherapy with double-bright (CD56bright /CD16bright) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: A proof-of-concept study. Br J Haematol. 2021;195:710–21. https://doi.org/10.1111/bjh.17751.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJ, Lee DA, Seeger RC. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res. 2013;19:2132–1243. https://doi.org/10.1158/1078-0432.CCR-12-1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shenouda MM, Gillgrass A, Nham T, Hogg R, Lee AJ, Chew MV, Shafaei M, Aarts C, Lee DA, Hassell J, Bane A, Dhesy-Thind S, Ashkar AA. Ex vivo expanded natural killer cells from breast cancer patients and healthy donors are highly cytotoxic against breast cancer cell lines and patient-derived tumours. Breast Cancer Res. 2017;19:76. https://doi.org/10.1186/s13058-017-0867-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah N, Li L, McCarty J, Kaur I, Yvon E, Shaim H, Muftuoglu M, Liu E, Orlowski RZ, Cooper L, Lee D, Parmar S, Cao K, Sobieiski C, Saliba R, Hosing C, Ahmed S, Nieto Y, Bashir Q, Patel K, Bollard C, Qazilbash M, Champlin R, Rezvani K, Shpall EJ. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017;177:457–66. https://doi.org/10.1111/bjh.14570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciurea SO, Kongtim P, Soebbing D, Trikha P, Behbehani G, Rondon G, Olson A, Bashir Q, Gulbis AM, Indreshpal K, Rezvani K, Shpall EJ, Bassett R, Cao K, Martin AS, Devine S, Horowitz M, Pasquini M, Lee DA, Champlin RE. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 2022;36:155–64. https://doi.org/10.1038/s41375-021-01349-4.

    Article  CAS  PubMed  Google Scholar 

  21. Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K, Lee G, Lee DA, Otegbeye F, Sekaly RP, de Lima M, Wald DN. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019;9:14916. https://doi.org/10.1038/s41598-019-51287-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Badeti S, Tseng HC, Ma MT, Liu T, Jiang JG, Liu C, Liu D. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol Ther Method Clin Dev. 2020;18:428–45. https://doi.org/10.1016/j.omtm.2020.06.014.

    Article  CAS  Google Scholar 

  23. Fernández A, Navarro-Zapata A, Escudero A, Matamala N, Ruz-Caracuel B, Mirones I, Pernas A, Cobo M, Casado G, Lanzarot D, Rodríguez-Antolín C, Vela M, Ferreras C, Mestre C, Viejo A, Leivas A, Martínez J, Fernández L, Pérez-Martínez A. Optimizing the procedure to manufacture clinical-grade NK cells for adoptive immunotherapy. Cancers (Basel). 2021;13:577. https://doi.org/10.3390/cancers13030577.

    Article  CAS  PubMed  Google Scholar 

  24. Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, Ando J, Ngo MC, Coustan-Smith E, Campana D, Szmania S, Garg T, Moreno-Bost A, Vanrhee F, Gee AP, Rooney CM. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012;14:1131–43. https://doi.org/10.3390/cancers13030577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moseman JE, Foltz JA, Sorathia K, Heipertz EL, Lee DA. Evaluation of serum-free media formulations in feeder cell-stimulated expansion of natural killer cells. Cytotherapy. 2020;22:322–8. https://doi.org/10.1016/j.jcyt.2020.02.002.

    Article  CAS  PubMed  Google Scholar 

  26. Vela M, Corral D, Carrasco P, Fernández L, Valentín J, González B, Escudero A, Balas A, de Paz R, Torres J, Leivas A, Martinez-Lopez J, Pérez-Martínez A. Haploidentical IL-15/41BBL activated and expanded natural killer cell infusion therapy after salvage chemotherapy in children with relapsed and refractory leukemia. Cancer Lett. 2018;422:107–17. https://doi.org/10.1016/j.canlet.2018.02.033.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865–74. https://doi.org/10.1182/blood-2010-04-282301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Streltsova MA, Erokhina SA, Kanevskiy LM, Lee DA, Telford WG, Sapozhnikov AM, Kovalenko EI. Analysis of NK cell clones obtained using interleukin-2 and gene-modified K562 cells revealed the ability of “senescent” NK cells to lose CD57 expression and start expressing NKG2A. PLoS ONE. 2018;13:e0208469. https://doi.org/10.1371/journal.pone.0208469.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, Seki S, Hayakawa M. Induction of CD16+CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK cells but also from CD16-CD56dim NK cells. Scand J Immunol. 2007;65:126–38. https://doi.org/10.1111/j.1365-3083.2006.01883.x.

    Article  CAS  PubMed  Google Scholar 

  30. Lieberman NAP, DeGolier K, Haberthur K, Chinn H, Moyes KW, Bouchlaka MN, Walker KL, Capitini CM, Crane CA. An uncoupling of canonical phenotypic markers and functional potency of ex vivo-expanded natural killer cells. Front Immunol. 2018;9:150. https://doi.org/10.3389/fimmu.2018.00150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buckle I, Guillerey C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer. Cancers (Basel). 2021;13:4263. https://doi.org/10.3390/cancers13174263.

    Article  CAS  PubMed  Google Scholar 

  32. Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022;22(10):557–75. https://doi.org/10.1038/s41568-022-00491-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Nunez Cortes A, Cao K, Daher M, Hosing C, Cohen EN, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall EJ, Rezvani K. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2018;6(382):6. https://doi.org/10.1056/NEJMoa1910607.

    Article  Google Scholar 

  34. Colamartino ABL, Lemieux W, Bifsha P, Nicoletti S, Chakravarti N, Sanz J, Roméro H, Selleri S, Béland K, Guiot M, Tremblay-Laganière C, Dicaire R, Barreiro L, Lee DA, Verhoeyen E, Haddad E. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Front Immunol. 2019;16(10):2873. https://doi.org/10.3389/fimmu.2019.02873.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Belarus government program ‘Knowledge-intensive technologies and technics’ (contract № 2/2017).

Author information

Authors and Affiliations

Authors

Contributions

T.Sh. designed the study and wrote the manuscript. A.M. engineered the feeder cell line. K.V., M.M. expanded NK cells. Y.L., N.M. and K.H. analyzed expanded NK cells. O.A. recruited the patients and supervised the clinical study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tatsiana V. Shman.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1057 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shman, T.V., Vashkevich, K.P., Migas, A.A. et al. Phenotypic and functional characterisation of locally produced natural killer cells ex vivo expanded with the K562-41BBL-mbIL21 cell line. Clin Exp Med 23, 2551–2560 (2023). https://doi.org/10.1007/s10238-022-00974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00974-2

Keywords

Navigation