Skip to main content

Advertisement

Log in

Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

A Correction to this article was published on 31 January 2023

This article has been updated

Abstract

Hepatocellular carcinoma (HCC) remains an incurable malignancy despite the treatment methods being continually updated. Matrix metalloproteinases (MMPs) promote the progression of HCC; however, no consensus exists on which MMP plays the predominant role in HCCs. In the present study, we analyzed differentially expressed genes in HCCs, especially MMPs, compared with adjacent tissues using the Cancer Genome Atlas database. The KEGG enrichment pathway using differentially expressed genes included extracellular matrix–receptor interaction, which was correlated with MMPs. We found that among the MMP family, only MMP1, MMP3, MMP8, MMP9, MMP11, MMP12, MMP14, MMP15, MMP20, MMP21, and MMP24 significantly increased in HCCs compared with adjacent tissues. Crucially, survival and univariate analyses indicated that only MMPs 1, 9, 12, and 14 predict poor overall survival; however, multivariate Cox analysis and a nomogram demonstrated that only MMP1 is a poor prognostic biomarker for HCCs. In addition, we observed significant enrichment of uncharacterized cells but decreased macrophages in HCC tissues. Consistent with decreased macrophages in HCCs, MMP1 was negatively associated with macrophages but positively correlated with uncharacterized cells, indicating that the main producer of MMP1 is uncharacterized cells. Furthermore, MMP1 expression was negatively correlated with immune responses of HCCs. Taken together, our findings indicated that MMP1 is a poor and predominant prognostic biomarker for patients with HCC and that anti-MMP1 may be a novel therapy that is worth studying in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All data generated in the study are included in the present article and supplementary data.

Change history

References

  1. Wang H, Naghavi M, Allen C, Barber RM, Carter A, Casey DC, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    PubMed  Google Scholar 

  3. Bruix J, Chan SL, Galle PR, Rimassa L, Sangro B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J Hepatol [Internet]. 2021; 75:960–74. Available from: https://www.sciencedirect.com/science/article/pii/S0168827821019036.

  4. Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015;44–46:147–56.

    PubMed  Google Scholar 

  5. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74. https://doi.org/10.1038/nrc745.

    Article  CAS  PubMed  Google Scholar 

  7. Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol. 1996;3:895–904.

    CAS  PubMed  Google Scholar 

  8. Masson R, Lefebvre O, Noël A, Fahime ME, Chenard MP, Wendling C, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol. 1998;140:1535–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998;58:1048–51.

    CAS  PubMed  Google Scholar 

  10. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 1999;17:177–81.

    CAS  PubMed  Google Scholar 

  11. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ha HY, Moon HB, Nam MS, Lee JW, Ryoo ZY, Lee TH, et al. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 2001;61:984–90.

    CAS  PubMed  Google Scholar 

  14. Wang S-W, Tai H-C, Tang C-H, Lin L-W, Lin T-H, Chang A-C, et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol. 2021;236:3979–90.

    CAS  PubMed  Google Scholar 

  15. Azevedo Martins JM, Rabelo-Santos SH, do Amaral Westin MC, Zeferino LC. Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: a competing risk analysis. BMC Cancer. 2020;20:660. https://doi.org/10.1186/s12885-020-07150-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Määttä M, Soini Y, Liakka A. Autio-Harmainen H. Differential Expression of Matrix Metalloproteinase (MMP)-2, MMP-9, and Membrane Type 1-MMP in Hepatocellular and Pancreatic Adenocarcinoma: Implications for Tumor Progression and Clinical Prognosis. Clin Cancer Res [Internet]. 2000; 6:2726 LP – 2734. Available from: http://clincancerres.aacrjournals.org/content/6/7/2726.abstract.

  17. Yu J, Ma S, Tian S, Zhang M, Ding X, Liu Y, et al. Systematic construction and validation of a prognostic model for hepatocellular carcinoma based on immune-related genes. Front Cell Dev Biol. 2021;9:700553.

    PubMed  PubMed Central  Google Scholar 

  18. Jacob A, Prekeris R. The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol. 2015;3:4.

    PubMed  PubMed Central  Google Scholar 

  19. Sakamoto Y, Mafune K, Mori M, Shiraishi T, Imamura H, Mori M, et al. Overexpression of MMP-9 correlates with growth of small hepatocellular carcinoma. Int J Oncol. 2000;17:237–43.

    CAS  PubMed  Google Scholar 

  20. Cao W, Fan W, Wang F, Zhang Y, Wu G, Shi X, et al. GM-CSF impairs erythropoiesis by disrupting erythroblastic island formation via macrophages. J Transl Med. 2022;20(1):1–7.

    Google Scholar 

  21. Wang Y, Li W, Schulz VP, Zhao H, Qu X, Qi Q, et al. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood Internet. 2021;1(138):1615–27. https://doi.org/10.1182/blood.2020007401/476012/Impairment-of-human-terminal-erythroid.

    Article  Google Scholar 

  22. Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, et al. Identification and transcriptome analysis of erythroblastic island macrophages. Blood Am Soc Hematol. 2019;134:480–91.

    CAS  Google Scholar 

  23. Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;10801(16):284–7.

    Google Scholar 

  24. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.

    PubMed  PubMed Central  Google Scholar 

  25. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35:i436–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou T, Cai Z, Ma N, Xie W, Gao C, Huang M, et al. A novel ten-gene signature predicting prognosis in hepatocellular carcinoma. Front cell Dev Biol. 2020;8:629.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin W, Wu S, Chen X, Ye Y, Weng Y, Pan Y, et al. Characterization of hypoxia signature to evaluate the tumor immune microenvironment and predict prognosis in glioma groups. Front Oncol. 2020;10:796.

    PubMed  PubMed Central  Google Scholar 

  29. Li W, Li T, Sun C, Du Y, Chen L, Du C, et al. Identification and prognostic analysis of biomarkers to predict the progression of pancreatic cancer patients. Mol Med. 2022;28:43. https://doi.org/10.1186/s10020-022-00467-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiong Y, Yuan L, Xiong J, Xu H, Luo Y, Wang G, et al. An outcome model for human bladder cancer: a comprehensive study based on weighted gene co-expression network analysis. J Cell Mol Med. 2020;24:2342–55.

    CAS  PubMed  Google Scholar 

  31. Jeong S-H, Kim RB, Park SY, Park J, Jung E-J, Ju Y-T, et al. Nomogram for predicting gastric cancer recurrence using biomarker gene expression. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2020;46:195–201.

    Google Scholar 

  32. Liu Z, Mi M, Li X, Zheng X, Wu G, Zhang L. A lncRNA prognostic signature associated with immune infiltration and tumour mutation burden in breast cancer. J Cell Mol Med. 2020;24:12444–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158:929–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst. 2016. https://doi.org/10.1093/jnci/djw144.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173:338-354.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res [Internet]. 2013; 73:2031 LP – 2043. Available from: http://cancerres.aacrjournals.org/content/73/7/2031.abstract.

  38. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng S-Y. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the αvβ1 integrin and focal adhesion kinase signaling pathway. Cancer Res [Internet]. Am Assoc Cancer Res. 2006; 66:775–83. Available from: https://cancerres.aacrjournals.org/content/66/2/775.

  39. Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol. 2015;31:65–75.

    CAS  PubMed  Google Scholar 

  40. Shi B, Chu J, Huang T, Wang X, Li Q, Gao Q, et al. The scavenger receptor MARCO expressed by tumor-associated macrophages are highly associated with poor pancreatic cancer prognosis. Front Oncol. 2021;11:771488.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pinter M, Scheiner B, Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut. 2021;70:204–14.

    CAS  PubMed  Google Scholar 

  42. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. The immune landscape of cancer. Immunity. 2018;48:812-830.e14.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther [Internet]. 2021; 17: 20–33. Available from: https://www.sciencedirect.com/science/article/pii/S2352320421000134.

  45. Espinoza-Sánchez NA, Chimal-Ramírez GK, Mantilla A, Fuentes-Pananá EM. IL-1β, IL-8, and matrix metalloproteinases-1, -2, and -10 are enriched upon monocyte-breast cancer cell cocultivation in a matrigel-based three-dimensional system. Front Immunol. 2017;8:205. https://doi.org/10.3389/fimmu.2017.00205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Iredale JP. Tissue inhibitors of metalloproteinases in liver fibrosis. Int J Biochem Cell Biol. 1997;29:43–54.

    CAS  PubMed  Google Scholar 

  48. Consolo M, Amoroso A, Spandidos DA, Mazzarino MC. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). Int J Mol Med. 2009;24:143–52.

    CAS  PubMed  Google Scholar 

  49. Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: Current status and therapeutic targets. Semin Cancer Biol [Internet]. 2011; 21:35–43. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X1000091X.

  50. Ogasawara S, Yano H, Momosaki S, Nishida N, Takemoto Y, Kojiro S, et al. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep. 2005;13:1043–8. https://doi.org/10.3892/or.13.6.1043.

    Article  CAS  PubMed  Google Scholar 

  51. Chen R, Cui J, Xu C, Xue T, Guo K, Gao D, et al. The significance of MMP-9 over MMP-2 in HCC invasiveness and recurrence of hepatocellular carcinoma after curative resection. Ann Surg Oncol. 2012;19(Suppl 3):S375–84.

    PubMed  Google Scholar 

  52. Jin Y, Liang Z-Y, Zhou W-X, Zhou L. High MMP14 expression is predictive of poor prognosis in resectable hepatocellular carcinoma. Pathology [Internet]. 2020; 52:359–65. Available from: https://www.sciencedirect.com/science/article/pii/S0031302520304621.

  53. Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda S, Kato T, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 2017;8:14470. https://doi.org/10.1038/ncomms14470.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sunami E, Tsuno N, Osada T, Saito S, Kitayama J, Tomozawa S, et al. MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. Oncologist. 2000;5:108–14.

    CAS  PubMed  Google Scholar 

  55. Yen C-Y, Chen C-H, Chang C-H, Tseng H-F, Liu S-Y, Chuang L-Y, et al. Matrix metalloproteinases (MMP) 1 and MMP10 but not MMP12 are potential oral cancer markers. Biomarkers. 2009;14:244–9. https://doi.org/10.1080/13547500902829375.

    Article  CAS  PubMed  Google Scholar 

  56. Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD. Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med. 2005;11:481–3. https://doi.org/10.1038/nm1243.

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Lan T, Li H, Xu L, Chen X, Liao H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 2021;11:1396–411.

    PubMed  PubMed Central  Google Scholar 

  58. Kim E, Kim D, Lee J-S, Yoe J, Park J, Kim C-J, et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology. 2018;67:2287–301.

    CAS  PubMed  Google Scholar 

  59. Yu C-L, Yu Y-L, Yang S-F, Hsu C-E, Lin C-L, Hsieh Y-H, et al. Praeruptorin A reduces metastasis of human hepatocellular carcinoma cells by targeting ERK/MMP1 signaling pathway. Environ Toxicol. 2021;36:540–9.

    CAS  PubMed  Google Scholar 

  60. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616. https://doi.org/10.1038/s41571-018-0073-4.

    Article  PubMed  Google Scholar 

  61. Rizzo A, Ricci AD. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin Invest Drugs. 2021. https://doi.org/10.1080/13543784.2021.1972969.

    Article  Google Scholar 

  62. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1:1223–5.

    PubMed  PubMed Central  Google Scholar 

  63. Ren D, Hua Y, Yu B, Ye X, He Z, Li C, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 2020;19:19. https://doi.org/10.1186/s12943-020-1144-6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67. https://doi.org/10.1038/nri.2017.108.

    Article  CAS  PubMed  Google Scholar 

  65. Siddhartha R, Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol. 2021;426:115593.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the authors listed in this manuscript.

Funding

This study was supported by Key Research Projects of Henan Higher Education Institutions (21A320049) and Henan Province Medical Science and Technology Research Project (SBGJ202102063).

Author information

Authors and Affiliations

Authors

Contributions

Wei Li and Linping Xu designed, wrote, and edited the manuscript; analyzed the data; and finished the figures. Hui Yang revised the manuscript. Meimei Yan analyzed the data. All authors approved the final manuscript.

Corresponding authors

Correspondence to Linping Xu or Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests relating to the publication of this manuscript.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10238_2022_897_MOESM1_ESM.tif

Supplementary Figure 1 (A) Upregulated KEGG pathways in HCC tissues. (B) Downregulated KEGG pathways in HCC tissues. (C) Upregulated GO terms in HCC tissues. (D) Downregulated GO terms in HCC tissues (TIF 7872 KB)

10238_2022_897_MOESM2_ESM.tif

Supplementary Figure 2 (A) The dotted line represents the median risk score and divides the patients into low-risk and high-risk groups. The curve of risk score. Survival status of the patients. More dead patients correspond to a higher risk score. Heat map of the expression profiles of the MMP3, -11, -15, -24, and -21 in the low- and high-risk groups. (B) Kaplan–Meier survival analysis of MMP3, -11, -15, -24, and -21 in the low- and high-risk groups. (C) Time-dependent ROC analysis of MMP3, -11, -15, -24, and -21 in the low- and high-risk groups (TIF 16729 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yang, H., Yan, M. et al. Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clin Exp Med 23, 2065–2083 (2023). https://doi.org/10.1007/s10238-022-00897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00897-y

Keywords

Navigation