Skip to main content

Advertisement

Log in

Immunotherapy for hepatocellular carcinoma

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is a threat to the health of all humans as a prevalent malignancy and is the sixth most common cancer worldwide. It is difficult to diagnose because symptoms do not show up until late in the disease, and patients often progress to the point where transplantation, resection, or even local treatment cannot be performed. The progression of HCC is regulated by the immune system, and immunotherapy enables the body's immune system's defenses to target liver cancer cells; therefore, immunotherapy has brought a new hope for the treatment of HCC. Currently, the main types of immunotherapies for liver cancer are: immune checkpoint inhibitors, liver cancer vaccines and cellular therapies. In this review, the progress of immunotherapy for the treatment of HCC is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

BCLC:

Barcelona Clinical Liver Cancer

ICIs:

Immune checkpoint inhibitors

ORR:

Objective response rate

mOS:

Median overall survival

mPFS:

Median progression-free survival

mDOR:

Median duration remission of response

TAAs:

Tumor-associated antigens

AFP:

Alpha-fetoprotein

AdV:

Replication-deficient adenovirus

GPC3:

Glypican-3

CTL:

T cytotoxicity

OS:

Overall survival

MRP3:

Multidrug resistance-associated protein 3

hTERT:

Human telomerase reverse transcriptase

CTA:

Cancer testicular antigen

DC:

Dendritic cell

APCs:

Antigen-presenting cells

LNPs:

Lipid nanoparticles

GM-CSF:

Granulocyte macrophage colony-stimulating factor

MHC:

Major histocompatibility complex

PTK:

Protein tyrosine kinase

TPK:

Tyrosine protein kinase

EGFR:

Epidermal growth factor receptor

CRS:

Cytokine release syndrome

TKI:

Tyrosine kinase inhibitors

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–91.

    PubMed  PubMed Central  Google Scholar 

  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.

    PubMed  PubMed Central  Google Scholar 

  4. Ferrante ND, Pillai A, Singal AG. Update on the diagnosis and treatment of hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 2020;16(10):506–16.

    PubMed  Google Scholar 

  5. Kim E, Viatour P. Hepatocellular carcinoma: old friends and new tricks. Exp Mol Med. 2020;52(12):1898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Ann Rev Pathol Mech Disease. 2021;16:223–49.

    CAS  Google Scholar 

  7. Qin SK, Ren ZG, Feng YH, Yau T, Wang BC, Zhao HT, et al. Atezolizumab plus bevacizumab versus sorafenib in the Chinese subpopulation with unresectable hepatocellular carcinoma: phase 3 randomized, open-label IMbrave150 study. Liver Cancer. 2021;10(4):296–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Finn RS, Qin SK, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. IMbrave150: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) plus bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021. https://doi.org/10.1200/JCO.2021.39.3_suppl.267.

    Article  Google Scholar 

  9. Zhenggang R, Jianming X, Yuxian B, Aibing X, Shundong C, Chengyou D, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. 2021;22(7):977–90.

    Google Scholar 

  10. Xu JM, Shen J, Gu SZ, Zhang Y, Wu LH, Wu J, et al. Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A for Nonrandomized, Open-label. Phase II Trial Clin Cancer Res. 2021;27(4):1003–11.

    CAS  PubMed  Google Scholar 

  11. Zhang Y, Xu JM, Shen J, Gu SZ, Wu LH, Wu J, et al. Update on overall survival (OS) of RESCUE: An open-label, phase 2 trial of camrelizumab (C) in combination with apatinib (A) in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2021. https://doi.org/10.1200/JCO.2021.39.15_suppl.4076.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ikeda M, Sung MW, Kudo M, Kobayashi M, Baron AD, Finn RS, et al. A phase Ib trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) in unresectable hepatocellular carcinoma (uHCC): updated results. Cancer Res. 2019;79(13):v286–7.

    Google Scholar 

  13. Qin S, Chen Z, Liu Y, Xiong J, Zou J, et al. A phase II study of anti–PD-1 antibody camrelizumab plus FOLFOX4 or GEMOX systemic chemotherapy as first-line therapy for advanced hepatocellular carcinoma or biliary tract cancer. J Clin Oncol. 2019. https://doi.org/10.1200/JCO.2019.37.15_suppl.4074.

    Article  PubMed  Google Scholar 

  14. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu CN, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Za X, Fr S, Julien E, Stéphane C, Sadahisa O, H. PD, et al. Pembrolizumab (pembro) in patients with advanced hepatocellular carcinoma (HCC): KEYNOTE-224 update. J Clin Oncol. 2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.4020.

    Article  Google Scholar 

  16. Qin S, Chen Z, Fang W, Ren Z, Xu R, Ryoo B-Y, et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. J Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.4_suppl.383.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21(4):571–80.

    CAS  PubMed  Google Scholar 

  18. Thomas Y, Koo KY, You KT, Anthony BEK, Armando S, Bruno S, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA oncol. 2020;6(11):e204564.

    Google Scholar 

  19. Abou-Alfa GK, Chan SL, Kudo M, Lau G, Kelley RK, Furuse J, et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.4_suppl.379.

    Article  Google Scholar 

  20. Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett. 2020;470:8–17.

    PubMed  Google Scholar 

  21. Bruno S, Pablo S, Sandra H, Ignacio M. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18(8):525–43.

    Google Scholar 

  22. Luigi B. New vaccination strategies in liver cancer. Cytokine Growth Factor Rev. 2017;36:125–9.

    Google Scholar 

  23. Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control. 2020;27(3):1073274820945975.

    PubMed  PubMed Central  Google Scholar 

  24. Bo L, Qiujiao W, Kun L, Xu D, Mingyue Z, Mengsen L. Alpha-Fetoprotein Binding Mucin and Scavenger Receptors: An Available Bio-Target for Treating Cancer. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.625936.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Christo K, Nikolaos C, Sergios T, Michail V, Dimitrios M, Efthymios G, et al. Immunotherapy for Hepatocellular Carcinoma: a 2021 Update. Cancers (Basel). 2020;12(10):2859.

    Google Scholar 

  26. Masahiro M, Norihiro F, Yasuhiro S, Shoichi M, Keigo S, Toshihiro S, et al. Usefulness of plasma full-length glypican-3 as a predictive marker of hepatocellular carcinoma recurrence after radial surgery. Oncol Lett. 2020;19(4):2657–66.

    Google Scholar 

  27. Li N, Gao W, Zhang Y-F, Ho M, et al. Glypicans as cancer therapeutic targets. Trends Cancer. 2018. https://doi.org/10.1016/j.trecan.2018.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yasuhiro S, Toshihiro S, Toshiaki Y, Itaru E, Tetsuya N. Next-Generation Cancer Immunotherapy Targeting Glypican-3. Front Oncol. 2019;9:248.

    Google Scholar 

  29. Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology. 2016;5(5): e1129483.

    PubMed  PubMed Central  Google Scholar 

  30. Rinku D, Mahato RI. Recent advances in hepatocellular carcinoma therapy. Pharmacol Ther. 2017;173:106–17.

    Google Scholar 

  31. Mizukoshi E, Nakagawa H, Kitahara M, Yamashita T, Arai K, Sunagozaka H, et al. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. Cancer Lett. 2015;369(1):242–9.

    CAS  PubMed  Google Scholar 

  32. Ricardo L, Dias AJ, Donghyun L, Arnaldo F, Uri T, Pedro C-B. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018;25(1):22.

    Google Scholar 

  33. Yongkang Z, Yu-Sheng C, Junzhi Z. Implications of telomerase reverse transcriptase in tumor metastasis. BMB Rep. 2020;53(9):458–65.

    Google Scholar 

  34. Naofumi M, Yasunari N. Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma. World J Gastroenterol. 2018;24(17):1839–58.

    Google Scholar 

  35. Negrini S, Palma RD, Filaci G. Anti-Cancer Immunotherapies Targeting Telomerase. Cancers (Basel). 2020;12(8):2260.

    CAS  PubMed  Google Scholar 

  36. Tim G, Alejandro F, Firouzeh K, Gisele NK, Nathalie B, Carmen A, et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10(1):209.

    Google Scholar 

  37. Fabio G, Barbara F, Cody H, Eldo F, Everardo C, Maurizio C-I. Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma. J Transl Med. 2007;5(1):3.

    Google Scholar 

  38. Meng W, Jiansheng L, Liping W, Xinfeng C, Zhen Z, Dongli Y, et al. Combined cancer testis antigens enhanced prediction accuracy for prognosis of patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8(4):3513–28.

    Google Scholar 

  39. Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel). 2020;12(3):590.

    CAS  PubMed  Google Scholar 

  40. Fu YJ, Liu SS, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):396.

    PubMed  PubMed Central  Google Scholar 

  41. Yukio I, Kouichirou T, Shigeru G, Atsushi S, Seiichiro K, Masataka S, et al. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer immunology, immunotherapy : CII. 2003;52(3):155–61.

    Google Scholar 

  42. H PD, S MR, Noweeda M, E TE, Forhad A, C SJ, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology (Baltimore, Md). 2009;49(1) 124–32.

  43. Qin W, Wei L, Leslie W, Hena K, Won KK, Vadim G, et al. Autologous tumor cell lysate-loaded dendritic cell vaccine inhibited tumor progression in an orthotopic murine model for hepatocellular carcinoma. Ann Surg Oncol. 2016;23(Suppl 5):574–82.

    Google Scholar 

  44. Teng CF, Wang T, Wu TH, Lin JH, Shih FY, Shyu WC, et al. Combination therapy with dendritic cell vaccine and programmed death ligand 1 immune checkpoint inhibitor for hepatocellular carcinoma in an orthotopic mouse model. Ther Adv Med Oncol. 2020;12.

  45. Hobernik D, Bros M. DNA Vaccines—How Far From Clinical Use? Int J Mol Sci. 2018;19(11):3605.

    PubMed  PubMed Central  Google Scholar 

  46. Antitumor immunity induced by DNA vaccine encoding alpha-fetoprotein/heat shock protein 70. World J Gastroenterol. 2004;(21) 3197–200.

  47. Antitumor immunopreventive effect in mice induced by DNA vaccine encoding a fusion protein of α-fetoprotein and CTLA4. World J Gastroenterol. 2004(02):200–4.

  48. H BL, S EJ, Clark GT, A GD. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med. 2014;12(1):86.

  49. Lei M, Yu Z, Leaf H. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1).

  50. Yake Z, Fangyuan X, You Y, Qin Z, Hong J, Yan W, et al. Immunotherapy of tumor RNA-loaded lipid nanoparticles against hepatocellular carcinoma. Int J Nanomed. 2021;16:1553–64.

    Google Scholar 

  51. Hammerich L, Binder A, Brody JD. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf. Mol Oncol. 2015;9(10):1966–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Luciano C, Eleonora A, Giuseppina DA, Laura S, Filippo B. In situ Vaccination by Direct Dendritic Cell Inoculation: The Coming of Age of an Old Idea? Front Immunol. 2019;10:2303.

    Google Scholar 

  53. Anne E, Melissa B, Grant M, Vera K. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines. 2020;8(11):274.

    Google Scholar 

  54. Park B-H, Hwang T, Liu T-C, Sze DY, Kim J-S, Kwon H-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9(6):533–42.

    CAS  PubMed  Google Scholar 

  55. Ta-Chiang L, Taeho H, Byeong-Ho P, John B, H KD. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Molecular therapy : the journal of the American Society of Gene Therapy. 2008;16(9) 1637–42.

  56. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeong H, J BC, Anne M, Won KC, Rick P, Kyung KM, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Molecular therapy : the journal of the American Society of Gene Therapy. 2011;19(6):1170–9.

  58. M M, J H, C LH, Y TW, Y C, W PS, et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 2019;8(8):1615817.

  59. Isabella L, Wiebke W, Raphael M, Christoph R, Frank T, Linda H. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol. 2021;12: 650486.

    Google Scholar 

  60. Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169(7):1342-56.e16.

    CAS  PubMed  Google Scholar 

  61. Bian J, Lin JZ, Long JY, Yang X, Yang XB, Lu X, et al. T lymphocytes in hepatocellular carcinoma immune microenvironment: insights into human immunology and immunotherapy. Am J Cancer Res. 2020;10(12):4585–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Faroogh M, Roza M, A. SV, Lakshmi T, Valerievich YA, Markov A, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12(1) 81.

  63. Liu X, Wen JY, Yi HL, Hou XR, Yin Y, Ye GF, et al. Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release. Ther Adv Med Oncol. 2020;12:1758835920910347.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li D, Li N, Zhang Y-F, Fu H, Feng M, Schneider D, et al. Persistent Polyfunctional Chimeric Antigen Receptor T Cells That Target Glypican 3 Eliminate Orthotopic Hepatocellular Carcinomas in Mice. Gastroenterology. 2020;158(8):2250-65.e20.

    CAS  PubMed  Google Scholar 

  65. Xiaoyu L, Fang G, Longwei J, Meng J, Lei A, Ming L, et al. 32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma. J Transl Med. 2020;18(1):295.

    Google Scholar 

  66. Luan S, Fang G, Zhanhui G, Lei A, Na L, Sujuan M, et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma. J Immunother Cancer. 2021;9(4): e001875.

    Google Scholar 

  67. Mengke N, Ming Y, Ning L, Kongju W, Kongming W. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol. 2021;11: 719896.

    Google Scholar 

  68. Li KS, Qian SY, Huang MM, Chen MJ, Peng L, Liu JW, et al. Development of GPC3 and EGFR-dual-targeting chimeric antigen receptor-T cells for adoptive T cell therapy. American Journal of Translational Research. 2021;13(1):156–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shunsuke K, Hidenori O, Hitoshi T, Jun H, Chigusa M, Masafumi I, et al. Clinical impact of c-Met expression and its gene amplification in hepatocellular carcinoma. Int J Clin Oncol. 2013;18(2):207–13.

    Google Scholar 

  70. Eh Y, Eh E, Mm M, Am R, Joydeep B, Susan E, et al. Norstictic Acid Inhibits Breast Cancer Cell Proliferation, Migration, Invasion, and In Vivo Invasive Growth Through Targeting C-Met. Phytotherapy research : PTR. 2016;30(4):557–66.

    Google Scholar 

  71. Katie H, Neil C, Nicola J, Rebecca L. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front Immunol. 2020;11: 568931.

    Google Scholar 

  72. Wei J, Tao L, Jiaojiao G, Jingjing W, Lizhou J, Xiao S, et al. Bispecific c-Met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Front Oncol. 2021;11:546586.

    PubMed  PubMed Central  Google Scholar 

  73. Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol. 2018;9:1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu X, Luo H, Shi B, Di S, Sun R, Su J, et al. Combined antitumor effects of sorafenib and GPC3-CAR T Cells in mouse models of hepatocellular carcinoma. Mol Ther. 2019;27(8):1483–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu L, Bi E, Ma X, Xiong W, Qian J, Ye L, et al. Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9. Nat Commun. 2020;11(1):5902.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hanren D, Chuan T, Daiwei S, Meixia C, Yelei G, Deyun C, et al. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial. Oncoimmunology. 2020;9(1):1846926.

    Google Scholar 

  77. Donghua S, Yaoping S, O KA, Xingxing Q, Yuan Z, Jiachang C, et al. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clinical cancer research : an official journal of the American Association for Cancer Research. 2020;26(15):3895.

  78. Konstantinos D, Hamza A, Nikolaos P. Cellular based treatment modalities for unresectable hepatocellular carcinoma. World J Clin Oncol. 2021;12(5):290–308.

    Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 81902914); Jiangsu Provincial Medical Youth Talent (No. QNRC2016043); and the Key Medical Science and Technology Development Project of Nanjing (No. ZKX16032.

Author information

Authors and Affiliations

Authors

Contributions

Mingzhen Zhou and Jie Shen composed the manuscript and provided figures. Baorui Liu reviewed and edited the manuscript. All authors interpreted the data, critically revised the manuscript for important intellectual contents and approved the final version.

Corresponding author

Correspondence to Jie Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Liu, B. & Shen, J. Immunotherapy for hepatocellular carcinoma. Clin Exp Med 23, 569–577 (2023). https://doi.org/10.1007/s10238-022-00874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00874-5

Keywords

Navigation