Skip to main content

Advertisement

Log in

Single nucleotide polymorphisms of TRAF2 and TRAF5 gene in ankylosing spondylitis: a case–control study

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Objective To investigate the role of eight locus polymorphisms of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 gene and their interaction in the susceptibility to ankylosing spondylitis (AS) in Chinese Han population. Methods Eight single nucleotide polymorphisms (SNPs) of TRAF2 (rs3750511, rs10781522, rs17250673, rs59471504) and TRAF5 (rs6540679, rs12569232, rs4951523, rs7514863) gene were genotyped in 673 AS patients and 687 controls. Results The SNPs of TRAF2 and TRAF5 do not indicate a correlation with the susceptibility of AS in Chinese Han population. Genotype frequencies of rs3750511 were statistically significant in females between patients and controls. The allele frequencies of rs10781522 and genotype frequencies of rs3750511 were statistically significant between groups of different diseases activity. One three-locus model, TRAF2 (rs10781522, rs17250673) and TRAF5 (rs12569232), had a maximum testing accuracy of 52.67% and a maximum cross-validation consistency (10/10) that was significant at the level of P = 0.0001, after determined empirically by permutation testing. As to environmental variables, only marginal association was found between sleep quality and AS susceptibility. Conclusion TRAF2 rs3750511 polymorphism may be associated with the susceptibility and severity of AS. Besides, the interaction of TRAF2 and TRAF5 genes may be associated with AS susceptibility, but many open questions remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baeten D, Baraliakos X, Braun J, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705–13. https://doi.org/10.1016/s0140-6736(13)61134-4.

    Article  CAS  PubMed  Google Scholar 

  2. Ng SC, Liao Z, Yu DT, Chan ES, Zhao L, Gu J. Epidemiology of spondyloarthritis in the People’s Republic of China: review of the literature and commentary. Semin Arthritis Rheum. 2007;37:39–47. https://doi.org/10.1016/j.semarthrit.2007.01.003.

    Article  PubMed  Google Scholar 

  3. Zhai J, Rong J, Li Q, Gu J. Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed? Clin Dev Immunol. 2013. https://doi.org/10.1155/2013/419357.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boonen A. A review of work-participation, cost-of-illness and cost-effectiveness studies in ankylosing spondylitis. Nat Clin Pract Rheumatol. 2006;2:546–53. https://doi.org/10.1038/ncprheum0297.

    Article  PubMed  Google Scholar 

  5. Miao J, Chen Y, Zhang B, et al. Surgical treatment for odontoid fractures in patients with long-standing ankylosing spondylitis: a report of 3 cases and review of the literature. World Neurosurg. 2018;116:88–93. https://doi.org/10.1016/j.wneu.2018.05.055.

    Article  PubMed  Google Scholar 

  6. Coksevim NH, Durmus D, Kuru O. Effects of global postural reeducation exercise and anti-TNF treatments on disease activity, function, fatigue, mobility, sleep quality and depression in patients with active Ankylosing spondylitis: a prospective follow-up study. J Back Musculoskelet Rehabil. 2018;31:1005–12. https://doi.org/10.3233/bmr-170901.

    Article  PubMed  Google Scholar 

  7. Skuhala T, Atelj A, Prepolec J, Al-Mufleh M, Stanimirović A, Vukelić D. A case report of severe recurrent varicella in an ankylosing spondylitis patient treated with adalimumab - a new side effect after 15 years of usage. BMC Infect Dis. 2019;19:127. https://doi.org/10.1186/s12879-019-3768-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khan MA, Mathieu A, Sorrentino R, Akkoc N. The pathogenetic role of HLA-B27 and its subtypes. Autoimmun Rev. 2007;6:183–9. https://doi.org/10.1016/j.autrev.2006.11.003.

    Article  CAS  PubMed  Google Scholar 

  9. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet. 1973;1:904–7. https://doi.org/10.1016/s0140-6736(73)91360-3.

    Article  CAS  PubMed  Google Scholar 

  10. Khan MA. HLA-B27 and its subtypes in world populations. Curr Opin Rheumatol. 1995;7:263–9. https://doi.org/10.1097/00002281-199507000-00001.

    Article  CAS  PubMed  Google Scholar 

  11. Hanson A, Brown MA. Genetics and the causes of ankylosing spondylitis. Rheum Dis Clin North Am. 2017;43:401–14. https://doi.org/10.1016/j.rdc.2017.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uygunoğlu U, Uluduz D, Taşçılar K, Saip S. Multiple sclerosis during adalimumab treatment in a case with ankylosing spondylitis. Rheumatol Int. 2014;34:141–3. https://doi.org/10.1007/s00296-012-2625-8.

    Article  PubMed  Google Scholar 

  13. Wang NG, Wang DC, Tan BY, Wang F, Yuan ZN. TNF-α and IL10 polymorphisms interaction increases the risk of ankylosing spondylitis in Chinese Han population. Int J Clin Exp Pathol. 2015;8:15204–9.

    PubMed  PubMed Central  Google Scholar 

  14. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62. https://doi.org/10.1016/j.cell.2008.01.020.

    Article  CAS  PubMed  Google Scholar 

  15. Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity. 2004;21:629–42. https://doi.org/10.1016/j.immuni.2004.09.011.

    Article  CAS  PubMed  Google Scholar 

  16. Ishida TK, Tojo T, Aoki T, et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc Natl Acad Sci U S A. 1996;93:9437–42. https://doi.org/10.1073/pnas.93.18.9437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swaidani S, Liu C, Zhao J, Bulek K, Li X. TRAF regulation of IL-17 cytokine signaling. Front Immunol. 2019;10:1293. https://doi.org/10.3389/fimmu.2019.01293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong B, Liu X, Wang X, et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol. 2012;13:1110–7. https://doi.org/10.1038/ni.2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amatya N, Childs EE, Cruz JA, et al. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci Signal. 2018. https://doi.org/10.1126/scisignal.aat4617.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xiang Q, Chen L, Fang J, et al. TNF receptor-associated factor 5 gene confers genetic predisposition to acute anterior uveitis and pediatric uveitis. Arthritis Res Ther. 2013;15:R113. https://doi.org/10.1186/ar4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Potter C, Eyre S, Cope A, Worthington J, Barton A. Investigation of association between the TRAF family genes and RA susceptibility. Ann Rheum Dis. 2007;66:1322–6. https://doi.org/10.1136/ard.2006.065706.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Yang J, Han L, et al. TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORgammat in promoting IL-17A expression. J Biol Chem. 2015;290:29086–94. https://doi.org/10.1074/jbc.M115.664573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Qi Y, Zheng L, et al. Xinfeng capsule improves pulmonary function in ankylosing spondylitis patients via NF-KappaB-iNOS-NO signaling pathway. J Tradit Chin Med. 2014;34:657–65.

    Article  Google Scholar 

  24. Hong X, Hao K, Ladd-Acosta C, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304. https://doi.org/10.1038/ncomms7304.

    Article  CAS  PubMed  Google Scholar 

  25. Edmunds L, Elswood J, Calin A. New light on uveitis in ankylosing spondylitis. J Rheumatol. 1991;18:50–2.

    CAS  PubMed  Google Scholar 

  26. Linssen A, Rothova A, Valkenburg HA, et al. The lifetime cumulative incidence of acute anterior uveitis in a normal population and its relation to ankylosing spondylitis and histocompatibility antigen HLA-B27. Invest Ophthalmol Vis Sci. 1991;32:2568–78.

    CAS  PubMed  Google Scholar 

  27. Zeboulon N, Dougados M, Gossec L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review. Ann Rheum Dis. 2008;67:955–9. https://doi.org/10.1136/ard.2007.075754.

    Article  CAS  PubMed  Google Scholar 

  28. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–47. https://doi.org/10.1086/321276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dervieux T, Wessels JA, Kremer JM, et al. Patterns of interaction between genetic and nongenetic attributes and methotrexate efficacy in rheumatoid arthritis. Pharmacogenet Genomics. 2012;22:1–9. https://doi.org/10.1097/FPC.0b013e32834d3e0b.

    Article  CAS  PubMed  Google Scholar 

  30. van den Berg R, de Hooge M, van Gaalen F, Reijnierse M, Huizinga T, van der Heijde D. Percentage of patients with spondyloarthritis in patients referred because of chronic back pain and performance of classification criteria: experience from the Spondyloarthritis Caught Early (SPACE) cohort. Rheumatology (Oxford). 2013;52:1492–9. https://doi.org/10.1093/rheumatology/ket164.

    Article  Google Scholar 

  31. Calonga-Solís V, Amorim LM, Farias TDJ, Petzl-Erler ML, Malheiros D, Augusto DG. Variation in genes implicated in B-cell development and antibody production affects susceptibility to pemphigus. Immunology. 2021;162:58–67. https://doi.org/10.1111/imm.13259.

    Article  CAS  PubMed  Google Scholar 

  32. Bumiller-Bini V, Cipolla GA, Spadoni MB, et al. Condemned or not to die? gene polymorphisms associated with cell death in pemphigus foliaceus. Front Immunol. 2019;10:2416. https://doi.org/10.3389/fimmu.2019.02416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Westra HJ, Peters MJ, Esko T, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–43. https://doi.org/10.1038/ng.2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, Ronai Z. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J. 2004;23:322–32. https://doi.org/10.1038/sj.emboj.7600044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Blackwell K, Thomas GS, Sun S, Yeh WC, Habelhah H. TRAF2 suppresses basal IKK activity in resting cells and TNFalpha can activate IKK in TRAF2 and TRAF5 double knockout cells. J Mol Biol. 2009;389:495–510. https://doi.org/10.1016/j.jmb.2009.04.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas GS, Zhang L, Blackwell K, Habelhah H. Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res. 2009;69:3665–72. https://doi.org/10.1158/0008-5472.can-08-4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin Z, Su Y, Zhang C, et al. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0074264.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity. 1997;7:715–25. https://doi.org/10.1016/s1074-7613(00)80391-x.

    Article  CAS  PubMed  Google Scholar 

  39. Nakano H, Sakon S, Koseki H, et al. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci U S A. 1999;96:9803–8. https://doi.org/10.1073/pnas.96.17.9803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tada K, Okazaki T, Sakon S, et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem. 2001;276:36530–4. https://doi.org/10.1074/jbc.M104837200.

    Article  CAS  PubMed  Google Scholar 

  41. Nagashima H, Okuyama Y, Hayashi T, Ishii N, So T. TNFR-associated factors 2 and 5 differentially regulate the instructive IL-6 receptor signaling required for Th17 development. J Immunol. 2016;196:4082–9. https://doi.org/10.4049/jimmunol.1501610.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to all the patients and healthy controls who participated in our study. And we would like to acknowledgement the national natural science foundation of China for its financial support.

Funding

The study was sponsored by the National Natural Science Foundation of China (82073655 and 81773514) and the Scientific Research Level upgrading Project of Anhui Medical University (2020xkjT006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Pan.

Ethics declarations

Conflict of interest

All authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Kong, J., Huang, L. et al. Single nucleotide polymorphisms of TRAF2 and TRAF5 gene in ankylosing spondylitis: a case–control study. Clin Exp Med 21, 645–653 (2021). https://doi.org/10.1007/s10238-021-00719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00719-7

Keywords

Navigation