Skip to main content


Log in

Human Cytomegalovirus and Epstein-Barr virus specific immunity in patients with ulcerative colitis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript


Human Cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are endowed with the ability of establishing lifelong latency in human hosts and reactivating in immunocompromised subjects, including patients suffering from ulcerative colitis (UC). We, therefore, aimed to investigate virus-specific immunity in UC patients. A cohort of 24 UC patients (14 responders and 10 refractory to therapy) and 26 control subjects was prospectively enrolled to undergo virus-specific serology (by ELISA assay) and assessment of both CD4+ and CD8+ virus-specific T-cell response (by interferon-γ enzyme-linked immunospotanalysis). In parallel, mucosal viral load was determined by quantitative real-time PCR and the values were correlated with both clinical and endoscopic indexes of activity. For statistics, the t-test, Mann–Withney test, Fisher’s exact test and Spearman rank correlation test were applied; p < 0.05 was considered significant. EBV-specific CD4+ and CD8+ T-cell responses were significantly lower in UC patients compared to controls (p < 0.0001 and p = 0.0006, respectively), whereas no difference was found for HCMV-specific T-cell response. When dividing the UC group according to response to therapy, both responders and refractory UC patients showed a deficient EBV-specific CD4+ T-cell response with respect to controls (p < 0.04 and p = 0.0003, respectively). Moreover, both EBV and HCMV mucosal loads were significantly higher in refractory UC than in responders and controls (p = 0.007 and 0.003; and p = 0.02 and 0.001, respectively), and correlated with activity indexes. Steroid therapy seemed the main risk factor for triggering EBV colitis. Finally, no cases of IgM positivity were found in the study population. An impaired EBV-specific immunity was clearly evident in UC patients, mostly in those refractory to therapy. The ELISPOT assay may serve as new tool for quantifying and monitoring virus-specific T-cell immunity in UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Enzyme-linked immunospot


Epstein-Barr virus


EBV-encoded RNAs


Human Cytomegalovirus


Fluorescein isothiocyanate


Interquartile range


Polymerase chain reaction


Simple Clinical Colitis Activity Index


Ulcerative colitis


Ulcerative Colitis Endoscopic Index of Severity


  1. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389:1756–70.

    Article  PubMed  Google Scholar 

  2. Rahier JF, Ben-Horin S, Chowers Y, et al. European Crohn’s and Colitis Organisation (ECCO). European evidence-based Consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohns Colitis. 2009;3:47–91.

    Article  CAS  PubMed  Google Scholar 

  3. McGeoch DJ, Dolan A, Ralph AC. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol. 2000;74:10401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiu YF, Sugden B. Epstein-Barr virus: the path from latent to productive infection. Annu Rev Virol. 2016;3:359–72.

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis MA, Nelson JA. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol. 2002;5:403–7.

    Article  CAS  PubMed  Google Scholar 

  6. Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol. 2014;24:142–53.

    Article  CAS  PubMed  Google Scholar 

  7. Vogl BA, Fagin U, Nerbas L, Schlenke P, Lamprecht P, Jabs WJ. Longitudinal analysis of frequency and reactivity of Epstein-Barr virus-specific T lymphocytes and their association with intermittent viral reactivation. J Med Virol. 2012;84:119–31.

    Article  CAS  PubMed  Google Scholar 

  8. Ljungman P, Griffiths P, Paya C. Definitions of HCMV infection and disease in transplant recipients. Clin Infect Dis. 2002;34:1094–7.

    Article  PubMed  Google Scholar 

  9. Yanai H, Shimizu N, Nagasaki S, Mitani N, Okita K. Epstein-Barr virus infection of the colon with inflammatory bowel disease. Am J Gastroenterol. 1999;94:1582–6.

    Article  CAS  PubMed  Google Scholar 

  10. Vega R, Bertrán X, Menacho M, et al. Cytomegalovirus infection in patients with inflammatory bowel disease. Am J Gastroenterol. 1999;94:1053–6.

    Article  CAS  PubMed  Google Scholar 

  11. Magro F, Gionchetti P, Eliakim R, et al. European Crohn’s and Colitis Organisation [ECCO]. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis. 2017;11:649–70.

    Article  PubMed  Google Scholar 

  12. Harbord M, Eliakim R, Bettenworth D, et al. European Crohn’s and Colitis Organisation [ECCO]. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J Crohns Colitis. 2017;11:769–84.

    Article  PubMed  Google Scholar 

  13. Yanai H, Hanauer SB. Assessing response and loss of response to biological therapies in IBD. Am J Gastroenterol. 2011;106:685–98.

    Article  CAS  PubMed  Google Scholar 

  14. Bradford K, Shih DQ. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. World J Gastroenterol. 2011;17:4166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Satsangi J, Silverberg MS, Vermeir S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walmsley RS, Ayres RC, Pounder RE, Allan R. A simple clinical colitis activity index. Gut. 1998;43:29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Travis SP, Schnell D, Krzeski P, et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: the Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Gut. 2012;61:535–42.

    Article  PubMed  Google Scholar 

  18. Calarota SA, Chiesa A, Zelini P, Comolli G, Minoli L, Baldanti F. Detection of Epstein-Barr virus-specific memory CD4+ T cells using a peptide-based cultured enzyme-linked immunospot assay. Immunology. 2013;139:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calarota SA, Chiesa A, Scaramuzzi L, et al. Normalizing ELISPOT responses to T-cell counts: a novel approach for quantification of HCMV-specific CD4(+) and CD8(+) T-cell responses in kidney transplant recipients. J Clin Virol. 2014;61:65–73.

    Article  CAS  PubMed  Google Scholar 

  20. Furione M, Rognoni V, Cabano E, Baldanti F. Kinetics of human cytomegalovirus (HCMV) DNAemia in transplanted patients expressed in international units as determined with the Abbott RealTime CMV assay and an in-house assay. J Clin Virol. 2012;55:317–22.

    Article  CAS  PubMed  Google Scholar 

  21. Baldanti F, Gatti M, Furione M, et al. Kinetics of Epstein-Barr virus DNA load in different blood compartments of pediatric recipients of T-cell-depleted HLA-haploidentical stem cell transplantation. J Clin Microbiol. 2008;46:3672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watzinger F, Suda M, Preuner S, et al. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients. J Clin Microbiol. 2004;42:5189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cottone M, Pietrosi G, Martorana G, et al. Pagliaro, Prevalence of cytomegalovirus infection in severe refractory ulcerative and Crohn’s colitis. Am J Gastroenterol. 2001;96:773–5.

    Article  CAS  PubMed  Google Scholar 

  24. Kambham N, Vij R, Cartwright CA, Longacre T. Cytomegalovitus infection in steroid-refractory ulcerative colitis: a case-control study. Am J Surg Pathol. 2004;28:365–73.

    Article  PubMed  Google Scholar 

  25. Roblin X, Pillet S, Oussalah A, et al. Cytomegalovirus load in inflamed intestinal tissue is predictive of resistance to immunosuppressive therapy in ulcerative colitis. Am J Gastroenterol. 2011;106:2001–8.

    Article  CAS  PubMed  Google Scholar 

  26. Dimitroulia E, Pitiriga VC, Piperaki ET, Spanakis NE, Tsakris A. Inflammatory bowel disease exacerbation associated with Epstein-Barr virus infection. Dis Colon Rectum. 2013;56:322–7.

    Article  PubMed  Google Scholar 

  27. Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202:673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphoma. N Engl J Med. 2004;350:1328–37.

    Article  CAS  PubMed  Google Scholar 

  29. Ciccocioppo R, Racca F, Paolucci S, et al. Human cytomegalovirus and Epstein-Barr virus infection in inflammatory bowel disease: need for mucosal viral load measurement. World J Gastroenterol. 2015;21:1915–26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nebbia G, Mattes FM, Sabin CA, et al. Differential effects of prednisolone and azathioprine on the development of human cytomegalovirus replication post liver transplantation. Transplantation. 2007;84:605–10.

    Article  CAS  PubMed  Google Scholar 

  31. Goodrum F, Caviness K, Zagallo P. Human cytomegalovirus persistence. Cell Microbiol. 2012;14:644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirman I, Whelan RL, Nielsen OH. Infliximab: mechanism of action beyond anti-TNF-alpha neutralization in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2004;16:639–41.

    Article  CAS  PubMed  Google Scholar 

  33. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res. 2009;143:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forbes BA, Bonville CA, Dock NL. The effects of a promoter of cell differentiation and selected hormones on human cytomegalovirus infection using an in vitro cell system. J Infect Dis. 1990;162:39–45.

    Article  CAS  PubMed  Google Scholar 

  35. Sester M, Sester U, Gärtner BC, Girndt M, Meyerhans A, Köhler H. Dominance of virus-specific CD8 T cells in human primary cytomegalovirus infection. J Am Soc Nephrol. 2002;13:2577–84.

    Article  CAS  PubMed  Google Scholar 

  36. Sester U, Gärtner BC, Wilkens H, et al. Differences in CMV-specific T-cell levels and long-term susceptibility to CMV infection after kidney, heart and lung transplantation. Am J Transplant. 2005;5:1483–9.

    Article  PubMed  Google Scholar 

  37. Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78:1373–80.

    Article  CAS  PubMed  Google Scholar 

  38. Kotton CN, Kumar D, Caliendo AM, et al. The Transplantation Society International CMV Consensus Group, The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation. 2018;102:900–31.

    Article  PubMed  Google Scholar 

  39. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010;20:202–13.

    Article  PubMed  Google Scholar 

  40. Rasmussen L, Matkin C, Spaete R, Pachl C, Merigan TC. Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J Infect Dis. 1991;164:835–42.

    Article  CAS  PubMed  Google Scholar 

  41. Jonjić S, Pavić I, Polić B, Crnković I, Lucin P, Koszinowski UH. Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med. 1994;179:1713–7.

    Article  PubMed  Google Scholar 

  42. Boppana SB, Britt WJ. Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J Infect Dis. 1995;171:1115–21.

    Article  CAS  PubMed  Google Scholar 

  43. Hakki M. Moving Past Ganciclovir and Foscarnet: Advances in CMV Therapy. Curr Hematol Malig Rep. 2020;15:90–102.

    Article  PubMed  Google Scholar 

  44. Keller MD, Bollard CM. Virus-specific T-cell therapies for oatients with primary immune deficiency. Blood. 2020;135:620–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yoshino T, Nakase H, Ueno S, et al. Usefulness of quantitative real-time PCR assay for early detection of cytomegalovirus infection in patients with ulcerative colitis refractory to immunosuppressive therapies. Inflamm Bowel Dis. 2007;13:1516–21.

    Article  PubMed  Google Scholar 

  46. Ganzenmueller T, Henke-Gendo C, Schlué J, Wedemeyer J, Huebner S, Heim A. Quantification of cytomegalovirus DNA levels in intestinal biopsies as a diagnostic tool for CMV intestinal disease. J Clin Virol. 2009;46:254–8.

    Article  CAS  PubMed  Google Scholar 

Download references


This study was financed in part by the San Matteo Hospital Foundation (Progetto di Ricerca Corrente) entitled: “Studio dell’infezione da Citomegalovirus umano ed Epstein-Barr virus nelle malattie infiammatorie croniche intestinali” (Project no. 821; code: 08064415). The sponsor had no role in the study design, collection, analysis or interpretation of the data, writing of the manuscript, nor in the decision to submit the paper for publication.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Rachele Ciccocioppo or Peter Kruzliak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccocioppo, R., Mengoli, C., Betti, E. et al. Human Cytomegalovirus and Epstein-Barr virus specific immunity in patients with ulcerative colitis. Clin Exp Med 21, 379–388 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: