Skip to main content

Advertisement

Log in

The current state of MiRNAs as biomarkers and therapeutic tools

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are non-coding RNAs with a length of 18–22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Banerjee J, Roy S, Dhas Y, et al. Senescence-associated miR-34a and miR-126 in middle-aged Indians with type 2 diabetes. Clin Exp Med. 2020;20(1):149–58. https://doi.org/10.1007/s10238-019-00593-4.

    Article  CAS  PubMed  Google Scholar 

  2. Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1–10. https://doi.org/10.1007/978-1-4939-6524-3_1.

    Article  CAS  PubMed  Google Scholar 

  3. Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem. 2020;188:112008. https://doi.org/10.1016/j.ejmech.2019.112008.

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Ning Y, Yang L, et al. Diagnostic value of circulating microRNAs for osteosarcoma in Asian populations: a meta-analysis. Clin Exp Med. 2017;17(2):175–83. https://doi.org/10.1007/s10238-016-0422-5.

    Article  CAS  PubMed  Google Scholar 

  5. Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017;26(5):865–74. https://doi.org/10.17219/acem/62915.

    Article  PubMed  Google Scholar 

  6. Oliveto S, Mancino M, Manfrini N, et al. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45–56. https://doi.org/10.4331/wjbc.v8.i1.45.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou LY, Qin Z, Zhu YH, et al. Current RNA-based therapeutics in clinical trials. Curr Gene Ther. 2019;19(3):172–96. https://doi.org/10.2174/1566523219666190719100526.

    Article  CAS  PubMed  Google Scholar 

  8. Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood). 2018;243(3):283–90. https://doi.org/10.1177/1535370217731291.

    Article  CAS  Google Scholar 

  9. Yuan L, Liu X, Chen F, et al. Diagnostic and prognostic value of circulating MicroRNA-133a in patients with acute myocardial infarction. Clin Lab. 2016;62(7):1233–41. https://doi.org/10.7754/Clin.Lab.2015.151023.

    Article  CAS  PubMed  Google Scholar 

  10. Alavi-Moghaddam M, Chehrazi M, Alipoor SD, et al. A preliminary study of microRNA-208b after acute myocardial infarction: impact on 6-month survival. Dis Mark. 2018;2018:2410451. https://doi.org/10.1155/2018/2410451.

    Article  CAS  Google Scholar 

  11. Zhou J, Chen L, Chen B, et al. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol. 2018;18(1):198. https://doi.org/10.1186/s12883-018-1196-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gareev I, Yang G, Sun J, et al. Circulating MicroRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurg. 2020;133:e369–75. https://doi.org/10.1016/j.wneu.2019.09.016.

    Article  PubMed  Google Scholar 

  13. Li G, Song Y, Li YD, et al. Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark Med. 2018;12(8):871–80. https://doi.org/10.2217/bmm-2018-0132.

    Article  CAS  PubMed  Google Scholar 

  14. Stojkovic S, Koller L, Sulzgruber P, et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int J Cardiol. 2019. https://doi.org/10.1016/j.ijcard.2019.11.090.

    Article  PubMed  Google Scholar 

  15. Darabi F, Aghaei M, Movahedian A, et al. The role of serum levels of microRNA-21 and matrix metalloproteinase-9 in patients with acute coronary syndrome. Mol Cell Biochem. 2016;422(1–2):51–60. https://doi.org/10.1007/s11010-016-2805-z.

    Article  CAS  PubMed  Google Scholar 

  16. Tenorio EJR, Braga AFF, Tirapelli DPDC, et al. Expression in whole blood samples of miRNA-191 and miRNA-455-3p in patients with AAA and their relationship to clinical outcomes after endovascular repair. Ann Vasc Surg. 2018;50:209–17. https://doi.org/10.1016/j.avsg.2018.01.086.

    Article  PubMed  Google Scholar 

  17. Chen J, Yang L, Wang X. Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma. Cancer Biomark. 2017;20(4):521–6. https://doi.org/10.3233/CBM-170335.

    Article  CAS  PubMed  Google Scholar 

  18. Zou JG, Ma LF, Li X, et al. Circulating microRNA array (miR-182, 200b and 205) for the early diagnosis and poor prognosis predictor of non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2019;23(3):1108–15. https://doi.org/10.26355/eurrev_201902_17001.

    Article  PubMed  Google Scholar 

  19. Sun Y, Wang M, Lin G, et al. Serum MicroRNA-155 as a potential biomarker to track disease in breast cancer. PLoS ONE. 2012;7:e47003. https://doi.org/10.1371/journal.pone.0047003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee YR, Kim G, Tak WY, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer. 2019;144(6):1444–52. https://doi.org/10.1002/ijc.31931.

    Article  CAS  PubMed  Google Scholar 

  21. Porzycki P, Ciszkowicz E, Semik M, et al. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol. 2018;50(9):1619–26. https://doi.org/10.1007/s11255-018-1938-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karimi N, Ali HosseinpourFeizi M, Safaralizadeh R, et al. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc. 2019;82(3):215–20. https://doi.org/10.1097/JCMA.0000000000000031.

    Article  PubMed  Google Scholar 

  23. Kong Y, Ning L, Qiu F, et al. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer. Cancer Biomark. 2019;24(4):477–83. https://doi.org/10.3233/CBM-182213.

    Article  CAS  PubMed  Google Scholar 

  24. Cai H, Zhao H, Tang J, et al. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res. 2015;194:505–10. https://doi.org/10.1016/j.jss.2014.11.025.

    Article  CAS  PubMed  Google Scholar 

  25. Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther. 2016;20(6):509–18. https://doi.org/10.1007/s40291-016-0221-4.

    Article  CAS  PubMed  Google Scholar 

  26. Mumford SL, Towler BP, Pashler AL, et al. Circulating MicroRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules. 2018. https://doi.org/10.3390/biom8020021.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Donati S, Ciuffi S, Brandi ML. Human circulating miRNAs real-time qRT-PCR-based analysis: an overview of endogenous reference genes used for data normalization. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20184353.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Silva SS, Lopes C, Teixeira AL, et al. Forensic miRNA: potential biomarker for body fluids? Forensic Sci Int Genet. 2015;14:1–10. https://doi.org/10.1016/j.fsigen.2014.09.002.

    Article  CAS  PubMed  Google Scholar 

  29. Foye C, Yan IK, David W, et al. Comparison of miRNA quantitation by nanostring in serum and plasma samples. PLoS ONE. 2017;12(12):e0189165. https://doi.org/10.1371/journal.pone.0189165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan J, Lieberman JA, Lockwood CM. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 2017;55(5):608–21. https://doi.org/10.1515/cclm-2016-0471.

    Article  CAS  PubMed  Google Scholar 

  31. Terrinoni A, Calabrese C, Basso D, et al. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med. 2019;57(7):932–53. https://doi.org/10.1515/cclm-2018-0838.

    Article  CAS  PubMed  Google Scholar 

  32. Glinge C, Clauss S, Boddum K, et al. Stability of circulating blood-based MicroRNAs—pre-analytic methodological considerations. PLoS ONE. 2017;12(2):e0167969. https://doi.org/10.1371/journal.pone.0167969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. 2015;61(1):56–63. https://doi.org/10.1373/clinchem.2014.221341.

    Article  CAS  PubMed  Google Scholar 

  34. Sheinerman K, Tsivinsky V, Mathur A, et al. Age- and sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY). 2018;10(10):3017–41. https://doi.org/10.18632/aging.10161310.18632/aging.101613.

    Article  CAS  Google Scholar 

  35. Faraldi M, Gomarasca M, Banfi G, et al. Free circulating miRNAs measurement in clinical settings: the still unsolved issue of the normalization. Adv Clin Chem. 2018;87:113–39. https://doi.org/10.1016/bs.acc.2018.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Ronde MWJ, Ruijter JM, Moerland PD, et al. Study design and qPCR data analysis guidelines for reliable circulating miRNA biomarker experiments: a review. Clin Chem. 2018;64(9):1308–18. https://doi.org/10.1373/clinchem.2017.285288.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Gao X, Wei F, et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene. 2014;533(1):389–97. https://doi.org/10.1016/j.gene.2013.09.038.

    Article  CAS  PubMed  Google Scholar 

  38. Shi R, Wang PY, Li XY, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget. 2015;6:26971–81. https://doi.org/10.18632/oncotarget.4699.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barbano R, Palumbo O, Pasculli B, et al. A miRNA signature for defining aggressive phenotype and prognosis in gliomas. PLoS ONE. 2014;9:e108950.

    Article  Google Scholar 

  40. Dufresne S, Rebillard A, Muti P, et al. A review of physical activity and circulating miRNA expression: implications in cancer risk and progression. Cancer Epidemiol Biomark Prev. 2018;27(1):11–24. https://doi.org/10.1158/1055-9965.EPI-16-0969.

    Article  CAS  Google Scholar 

  41. Xiang M, Zeng Y, Yang R, et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. 2014;454(1):210–4. https://doi.org/10.1016/j.bbrc.2014.10.064.

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Zhang X, Yuan J, et al. Evaluation of the performance of serum miRNAs as normalizers in microRNA studies focused on cardiovascular disease. J Thorac Dis. 2018;10(5):2599–607. https://doi.org/10.21037/jtd.2018.04.128.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rice J, Roberts H, Rai SN, et al. Housekeeping genes for studies of plasma microRNA: a need for more precise standardization. Surgery. 2015;158(5):1345–51. https://doi.org/10.1016/j.surg.2015.04.025.

    Article  PubMed  Google Scholar 

  44. Zalewski K, Misiek M, Kowalik A, et al. Normalizers for microRNA quantification in plasma of patients with vulvar intraepithelial neoplasia lesions and vulvar carcinoma. Tumour Biol. 2017;39(11):1010428317717140. https://doi.org/10.1177/1010428317717140.

    Article  CAS  PubMed  Google Scholar 

  45. Tian T, Wang J, Zhou X. A review: microRNA detection methods. Org Biomol Chem. 2015;13(8):2226–38. https://doi.org/10.1039/c4ob02104e.

    Article  CAS  PubMed  Google Scholar 

  46. Bellingham SA, Shambrook M, Hill AF. Quantitative analysis of exosomal miRNA via qPCR and digital PCR. Methods Mol Biol. 2017;1545:55–70. https://doi.org/10.1007/978-1-4939-6728-5_5.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Yang X, Yang J, et al. Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis. ClinExp Med. 2016;16(1):29–35. https://doi.org/10.1007/s10238-014-0332-3.

    Article  CAS  Google Scholar 

  48. Gao L, Jiang F. MicroRNA (miRNA) profiling. Methods Mol Biol. 2016;1381:151–61. https://doi.org/10.1007/978-1-4939-3204-7_8.

    Article  CAS  PubMed  Google Scholar 

  49. Hu Y, Lan W, Miller D. Next-generation sequencing for MicroRNA expression profile. Methods Mol Biol. 2017;1617:169–77. https://doi.org/10.1007/978-1-4939-7046-9_12.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng Y, Dong L, Zhang J, et al. Recent advances in microRNA detection. Analyst. 2018;143(8):1758–74. https://doi.org/10.1039/C7AN02001E.

    Article  CAS  PubMed  Google Scholar 

  51. Fitarelli-Kiehl M, Yu F, Ashtaputre R, et al. Denaturation-enhanced droplet digital PCR for liquid biopsies. Clin Chem. 2018;64(12):1762–71. https://doi.org/10.1373/clinchem.2018.293845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22. https://doi.org/10.1038/nrd.2016.246.

    Article  CAS  PubMed  Google Scholar 

  53. Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology. 2019;71(1):411–25. https://doi.org/10.1007/s10616-018-0291-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30. https://doi.org/10.1158/0008-5472.CAN-10-0655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trang P, Wiggins JF, Daige CL, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22. https://doi.org/10.1038/mt.2011.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bejerano T, Etzion S, Elyagon S, et al. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 2018;18(9):5885–91. https://doi.org/10.1021/acs.nanolett.8b02578.

    Article  CAS  PubMed  Google Scholar 

  57. Fan R, Zhong J, Zheng S, et al. microRNA-218 increase the sensitivity of gastrointestinal stromal tumor to imatinib through PI3K/AKT pathway. ClinExp Med. 2015;15(2):137–44. https://doi.org/10.1007/s10238-014-0280-y.

    Article  CAS  Google Scholar 

  58. Yang Y, Jia Y, Xiao Y, et al. Tumor-targeting anti-MicroRNA-155 delivery based on biodegradable poly(ester amine) and hyaluronic acid shielding for lung cancer therapy. Chem Phys Chem. 2018;19(16):2058–69. https://doi.org/10.1002/cphc.201701375.

    Article  CAS  PubMed  Google Scholar 

  59. Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019. https://doi.org/10.1016/j.jconrel.2019.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bhol CS, Panigrahi DP, Praharaj PP, et al. Epigenetic modifications of autophagy in cancer and cancer therapeutics. Semin Cancer Biol. 2019. https://doi.org/10.1016/j.semcancer.2019.05.020.

    Article  PubMed  Google Scholar 

  61. Dai X, Kaushik AC, Zhang J. The emerging role of major regulatory RNAs in cancer control. Front Oncol. 2019;9:920. https://doi.org/10.3389/fonc.2019.00920.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. https://doi.org/10.3389/fgene.2019.00478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jayaraj R, Nayagam SG, Kar A, et al. Clinical theragnostic relationship between drug-resistance specific miRNA expressions, chemotherapeutic resistance, and sensitivity in breast cancer: a systematic review and meta-analysis. Cells. 2019. https://doi.org/10.3390/cells8101250.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Farhan M, Aatif M, Dandawate P, et al. Non-coding RNAs as mediators of tamoxifen resistance in breast cancers. Adv Exp Med Biol. 2019;1152:229–41. https://doi.org/10.1007/978-3-030-20301-6_11.

    Article  CAS  PubMed  Google Scholar 

  65. Zeng A, Wei Z, Yan W, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett. 2018;436:10–21. https://doi.org/10.1016/j.canlet.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  66. Qian C, Wang B, Zou Y, et al. MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag Res. 2019;11:6829–40. https://doi.org/10.2147/CMAR.S210076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo J, Jin D, Wu Y, et al. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine. 2018;35:204–21. https://doi.org/10.1016/j.ebiom.2018.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lv L, An X, Li H, et al. Effect of miR-155 knockdown on the reversal of doxorubicin resistance in human lung cancer A549/dox cells. Oncol Lett. 2018;11(2):1161–6.

    Article  Google Scholar 

  69. Gallant-Behm CL, Piper J, Dickinson BA, et al. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen. 2018;26(4):311–23. https://doi.org/10.1111/wrr.12660.

    Article  PubMed  Google Scholar 

  70. Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35(2):180–8. https://doi.org/10.1007/s10637-016-0407-y.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38(1):53. https://doi.org/10.1186/s13046-019-1059-5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Zandwijk N, Pavlakis NS, Kao S, et al. MesomiR 1: a phase I study of TargomiRs in patients with refractory malignant pleural mesothelioma (MPM) and lung cancer (NSCLC). Ann Oncol. 2015. https://doi.org/10.1093/annonc/mdv090.2.

    Article  Google Scholar 

  73. Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018;183(3):428–44.

    Article  CAS  Google Scholar 

  74. Babaei K, Shams S, Keymoradzadeh A, et al. An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci. 2020;240:117077. https://doi.org/10.1016/j.lfs.2019.117077.

    Article  CAS  PubMed  Google Scholar 

  75. Leimena C, Qiu H. Non-coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19040927.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46(1):11–21. https://doi.org/10.1042/BST20170037.

    Article  CAS  PubMed  Google Scholar 

  77. Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43. https://doi.org/10.1016/j.omtn.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43. https://doi.org/10.1016/j.bbamcr.2010.06.013.

    Article  CAS  PubMed  Google Scholar 

  79. Hydbring P, Badalian-Very G. Clinical application of microRNAs. F1000Res. 2013;2:136. https://doi.org/10.12688/f1000research.2-136.v3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Grant of the Republic of Bashkortostan to young scientists of February 7, 2020 No. CD-43.

Author information

Authors and Affiliations

Authors

Contributions

IG, OB, and GY contributed to conception and design. VP, AI, and JS helped in the acquisition of data. IG and OB performed analysis and interpretation of data. IG drafted the article. GY and VP critically revised the article. SZsupervised the study and approved the final version of the manuscript on behalf of all authors.

Corresponding author

Correspondence to Shiguang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gareev, I., Beylerli, O., Yang, G. et al. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 20, 349–359 (2020). https://doi.org/10.1007/s10238-020-00627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00627-2

Keywords

Navigation