Skip to main content

Advertisement

Log in

Patient-derived xenograft models for personalized medicine in colorectal cancer

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Establishing superior preclinical models is critical for translational cancer research owing to the high failure rates of novel therapeutics in clinical studies. Even though cell line-derived xenograft models are easy to create, they have numerous limitations since these models do not represent the distinctive features of each cancer patient adequately. To circumvent the discrepancies between xenograft models and tumors, patient-derived xenograft (PDX) models have been developed. These models are established through the engraftment of tissue from a patient’s tumor into an immune-deficient mouse, which preserves cell–cell interactions and tumor microenvironment. Since PDXs precisely replicate intratumoral heterogeneity, a range of chemotherapeutic agents can be tested on individual tumors. Colorectal cancer represents a unique case to demonstrate clinical perspectives revealed by PDX models since they surmount limitations of conventional ex vivo models. Even though PDX models have been associated with drawbacks with respect to prediction of clinical outcomes, they are currently the model of choice for preclinical investigations in colorectal cancer. In the current review, we provide an overview of the methodology and applications of PDX for colorectal cancer and discuss critical issues for the advancement of these models for preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912.

    Article  PubMed  Google Scholar 

  2. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53. https://doi.org/10.1158/0008-5472.can-07-6611.

    Article  CAS  PubMed  Google Scholar 

  3. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7. https://doi.org/10.1055/s-0029-1242458.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Yuan J, Zhang HY, et al. Natural resistance to apoptosis correlates with resistance to chemotherapy in colorectal cancer cells. Clin Exp Med. 2012;12(2):97–103. https://doi.org/10.1007/s10238-011-0146-5.

    Article  CAS  PubMed  Google Scholar 

  5. Abaan OD, Polley EC, Davis SR, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013;73(14):4372–82. https://doi.org/10.1158/0008-5472.can-12-3342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013. https://doi.org/10.1158/2159-8290.cd-14-0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lasabova Z, Kalman M, Holubekova V, et al. Mutation analysis of POLE gene in patients with early-onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clin Exp Med. 2019;19(3):393–400. https://doi.org/10.1007/s10238-019-00558-7.

    Article  CAS  PubMed  Google Scholar 

  8. Oh BY, Hong HK, Lee WY, Cho YB. Animal models of colorectal cancer with liver metastasis. Cancer Lett. 2017;387:114–20. https://doi.org/10.1016/j.canlet.2016.01.048.

    Article  CAS  PubMed  Google Scholar 

  9. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol. 2012;29(6):613–24. https://doi.org/10.1016/j.nbt.2012.03.004.

    Article  CAS  PubMed  Google Scholar 

  10. Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci). 2018;6(3–4):79–100. https://doi.org/10.1142/s2339547818300020.

    Article  PubMed  Google Scholar 

  11. Burney IA, Lakhtakia R. Precision medicine: where have we reached and where are we headed? Sultan Qaboos Univ Med J. 2017;17(3):e255–8. https://doi.org/10.18295/squmj.2017.17.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Byrne AT, Alferez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68. https://doi.org/10.1038/nrc.2016.140.

    Article  CAS  PubMed  Google Scholar 

  13. Galimi F, Torti D, Sassi F, et al. Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res. 2011;17(10):3146–56. https://doi.org/10.1158/1078-0432.ccr-10-3377.

    Article  CAS  PubMed  Google Scholar 

  14. Bertotti A, Migliardi G, Galimi F, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23. https://doi.org/10.1158/2159-8290.cd-11-0109.

    Article  CAS  PubMed  Google Scholar 

  15. Julien S, Merino-Trigo A, Lacroix L, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28. https://doi.org/10.1158/1078-0432.ccr-12-0372.

    Article  CAS  PubMed  Google Scholar 

  16. Burgenske DM, Monsma DJ, Dylewski D, et al. Establishment of genetically diverse patient-derived xenografts of colorectal cancer. Am J Cancer Res. 2014;4(6):824–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38. https://doi.org/10.1016/j.stem.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Yao YM, Donoho GP, Iversen PW, et al. Mouse PDX trial suggests synergy of concurrent inhibition of RAF and EGFR in colorectal cancer with BRAF or KRAS mutations. Clin Cancer Res. 2017;23(18):5547–60. https://doi.org/10.1158/1078-0432.ccr-16-3250.

    Article  CAS  PubMed  Google Scholar 

  19. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–86. https://doi.org/10.1016/j.semcancer.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  20. Puig I, Chicote I, Tenbaum SP, et al. A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells. Clin Cancer Res. 2013;19(24):6787–801. https://doi.org/10.1158/1078-0432.ccr-12-1740.

    Article  CAS  PubMed  Google Scholar 

  21. Williams SA, Anderson WC, Santaguida MT, Dylla SJ. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest. 2013;93(9):970–82. https://doi.org/10.1038/labinvest.2013.92.

    Article  PubMed  Google Scholar 

  22. Fu XY, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci USA. 1991;88(20):9345–9. https://doi.org/10.1073/pnas.88.20.9345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. https://doi.org/10.1016/0092-8674(90)90186-i.

    Article  CAS  PubMed  Google Scholar 

  24. Nakarai C, Osawa K, Akiyama M, et al. Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer. Clin Exp Med. 2015;15(3):333–41. https://doi.org/10.1007/s10238-014-0298-1.

    Article  CAS  PubMed  Google Scholar 

  25. Vanova B, Kalman M, Jasek K, et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med. 2019;19(2):219–24. https://doi.org/10.1007/s10238-019-00545-y.

    Article  CAS  PubMed  Google Scholar 

  26. Fichtner I, Slisow W, Gill J, et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer. 2004;40(2):298–307. https://doi.org/10.1016/j.ejca.2003.10.011.

    Article  CAS  PubMed  Google Scholar 

  27. Sareeboot T, Punyarit P, Petmitr S. DNA amplification on chromosome correlated with poor prognosis in colorectal cancer. Clin Exp Med. 2011;11(2):97–103. https://doi.org/10.1007/s10238-010-0107-4.

    Article  PubMed  Google Scholar 

  28. Qiu Y, Cai G, Zhou B, et al. A distinct metabolic signature of human colorectal cancer with prognostic potential. Clin Cancer Res. 2014;20(8):2136–46. https://doi.org/10.1158/1078-0432.ccr-13-1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727. https://doi.org/10.1038/ncomms9727.

    Article  CAS  PubMed  Google Scholar 

  30. Isella C, Brundu F, Bellomo SE, et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat Commun. 2017;8:15107. https://doi.org/10.1038/ncomms15107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeBord LC, Pathak RR, Villaneuva M, et al. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res. 2018;8(8):1642.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nunes M, Vrignaud P, Vacher S, et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data. Cancer Res. 2015;75(8):1560–6. https://doi.org/10.1158/0008-5472.can-14-1590.

    Article  CAS  PubMed  Google Scholar 

  33. Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat Off J Korean Cancer Assoc. 2018;50(1):1.

    Google Scholar 

  34. Maekawa H, Miyoshi H, Yamaura T, et al. A chemosensitivity study of colorectal cancer using xenografts of patient-derived tumor-initiating cells. Mol Cancer Ther. 2018;17(10):2187–96.

    Article  CAS  PubMed  Google Scholar 

  35. Teng R, Zhao J, Zhao Y, et al. Chimeric antigen receptor–modified T cells repressed solid tumors and their relapse in an established patient-derived colon carcinoma xenograft model. J Immunother. 2019;42(2):33.

    Article  CAS  PubMed  Google Scholar 

  36. Prasetyanti PR, van Hooff SR, van Herwaarden T, et al. Capturing colorectal cancer inter-tumor heterogeneity in patient-derived xenograft (PDX) models. Int J Cancer. 2019;144(2):366–71.

    Article  CAS  PubMed  Google Scholar 

  37. Yu SM, Jung S-H, Chung Y-J. Comparison of the genetic alterations between primary colorectal cancers and their corresponding patient-derived xenograft tissues. Genomics Inform. 2018;16(2):30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. De La Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E. Humanized mice for the study of immuno-oncology. Trends Immunol. 2018;39(9):748–63. https://doi.org/10.1016/j.it.2018.07.001.

    Article  CAS  Google Scholar 

  39. Jespersen H, Lindberg MF, Donia M, et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun. 2017;8(1):707. https://doi.org/10.1038/s41467-017-00786-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corcoran RB, Atreya CE, Falchook GS, et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(34):4023–31. https://doi.org/10.1200/JCO.2015.63.2471.

    Article  CAS  Google Scholar 

  41. Malaney P, Nicosia SV, Davé V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014;344(1):1–12. https://doi.org/10.1016/j.canlet.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  42. Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33(34):4032–8. https://doi.org/10.1200/jco.2015.63.2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25. https://doi.org/10.1038/nm.3954.

    Article  CAS  PubMed  Google Scholar 

  44. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125. https://doi.org/10.1126/science.1247125.

    Article  CAS  PubMed  Google Scholar 

  45. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45. https://doi.org/10.1016/j.cell.2015.03.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang H, Sun L, Liu M, Mao Y. Patient-derived organoids: a promising model for personalized cancer treatment. Oxford: Oxford University Press; 2018.

    Google Scholar 

  47. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Science and Technology Projects (Nos. 2017C37159 to YL)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Lin, Y. Patient-derived xenograft models for personalized medicine in colorectal cancer. Clin Exp Med 20, 167–172 (2020). https://doi.org/10.1007/s10238-020-00609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00609-4

Keywords

Navigation