Skip to main content

Advertisement

Log in

The clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The prognostic value of programed death-ligand 1 (PD-L1) in urothelial carcinoma (UC) has been assessed in previous studies, while the results remain controversial and heterogeneous. Therefore, we performed this meta-analysis to explore the prognostic effect of PD-L1 in patients with UC. PubMed, Embase and Web of Science were searched to identify the studies. Hazard ratios (HR) with 95% confidence interval (95% CI) and clinicopathological factors were extracted from included studies. A total of 1819 patients with UC from 11 published studies were incorporated. The results of meta-analysis showed that positive PD-L1 expression was significantly associated with poorer overall survival (OS) (HR 1.59, 95% CI 1.05–2.40) and disease-free survival (DFS) (HR 1.83, 95% CI 1.03–3.25), but not recurrence-free survival. Moreover, in the subgroup analysis, significant associations between PD-L1 expression and OS or DFS were found in bladder UC, the cutoff value of positive expression of PD-L1 ≥ 5% and the expression of PD-L1 on the tumor cell membrane. Interestingly, positive PD-L1 expression was correlated with poorer pathological T stage (OR 2.03, 95% CI 1.46–2.82). Our meta-analysis implies that PD-L1 might be a valuable biomarker of poor prognosis for UC, especially bladder UC, although further large-scale and well-designed studies are warranted to verify the prognostic value of PD-L1 for UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. CA: a cancer journal for clinicians. Cancer Stat. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.

    Article  Google Scholar 

  2. Roupret M, Babjuk M, Comperat E, et al. European Association of Urology Guidelines on upper urinary tract urothelial carcinoma: 2017 update. Eur Urol. 2018;73(1):111–22. https://doi.org/10.1016/j.eururo.2017.07.036.

    Article  Google Scholar 

  3. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Investig. 2015;125(9):3384–91. https://doi.org/10.1172/jci80011.

    Article  PubMed  Google Scholar 

  4. Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597. https://doi.org/10.3389/fimmu.2017.01597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Powles T, Necchi A, Rosen G, Hariharan S, Apolo AB. Anti-Programmed cell death 1/ligand 1 (PD-1/PD-L1) antibodies for the treatment of urothelial carcinoma: state of the art and future development. Clin Genitourin Cancer. 2017. https://doi.org/10.1016/j.clgc.2017.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Afreen S, Dermime S. The immunoinhibitory B7-H1 molecule as a potential target in cancer: killing many birds with one stone. Hematol Oncol Stem Cell Ther. 2014;7(1):1–17. https://doi.org/10.1016/j.hemonc.2013.09.005.

    Article  CAS  PubMed  Google Scholar 

  7. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. https://doi.org/10.1126/scitranslmed.aad7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013;34(11):556–63. https://doi.org/10.1016/j.it.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  9. Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064–75. https://doi.org/10.1093/neuonc/nou307.

    Article  CAS  PubMed  Google Scholar 

  10. Riobello C, Vivanco B, Reda S, et al. Programmed death ligand-1 expression as immunotherapeutic target in sinonasal cancer. Head Neck. 2018;40(4):818–27. https://doi.org/10.1002/hed.25067.

    Article  PubMed  Google Scholar 

  11. Cha YJ, Kim HR, Lee CY, Cho BC, Shim HS. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer. 2016;97:73–80. https://doi.org/10.1016/j.lungcan.2016.05.001.

    Article  PubMed  Google Scholar 

  12. Jiang D, Xu YY, Li F, Xu B, Zhang XG. The role of B7-H1 in gastric carcinoma: clinical significance and related mechanism. Med Oncol. 2014;31(11):268. https://doi.org/10.1007/s12032-014-0268-1.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao LW, Li C, Zhang RL, et al. B7-H1 and B7-H4 expression in colorectal carcinoma: correlation with tumor FOXP3(+) regulatory T-cell infiltration. Acta Histochem. 2014;116(7):1163–8. https://doi.org/10.1016/j.acthis.2014.06.003.

    Article  CAS  PubMed  Google Scholar 

  14. Boorjian SA, Sheinin Y, Crispen PL, et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008;14(15):4800–8. https://doi.org/10.1158/1078-0432.ccr-08-0731.

    Article  CAS  PubMed  Google Scholar 

  15. Pichler R, Heidegger I, Fritz J, et al. PD-L1 expression in bladder cancer and metastasis and its influence on oncologic outcome after cystectomy. Oncotarget. 2017;8(40):66849–64. https://doi.org/10.18632/oncotarget.19913.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22. https://doi.org/10.1016/s1470-2045(17)30065-7.

    Article  CAS  PubMed  Google Scholar 

  17. Bellmunt J, Mullane SA, Werner L, et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol. 2015;26(4):812–7. https://doi.org/10.1093/annonc/mdv009.

    Article  CAS  PubMed  Google Scholar 

  18. Erlmeier F, Seitz AK, Hatzichristodoulou G, et al. The role of PD-L1 expression and intratumoral lymphocytes in response to perioperative chemotherapy for urothelial carcinoma. Bladder Cancer. 2016;2(4):425–32. https://doi.org/10.3233/blc-160067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krabbe LM, Heitplatz B, Preuss S, et al. Prognostic value of PD-1 and PD-L1 expression in patients with high grade upper tract urothelial carcinoma. J Urol. 2017;198(6):1253–62. https://doi.org/10.1016/j.juro.2017.06.086.

    Article  CAS  PubMed  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41. https://doi.org/10.1016/j.ijsu.2010.02.007.

    Article  PubMed  Google Scholar 

  21. Lan X, Zhang MM, Pu CL, et al. Impact of human leukocyte antigen mismatching on outcomes of liver transplantation: a meta-analysis. World J Gastroenterol. 2010;16(27):3457–64.

    Article  Google Scholar 

  22. Deva S, Jameson M. Histamine type 2 receptor antagonists as adjuvant treatment for resected colorectal cancer. Cochrane Database Syst Rev. 2012;8:Cd007814. https://doi.org/10.1002/14651858.cd007814.pub2.

    Article  Google Scholar 

  23. Hogeveen M, Blom HJ, den Heijer M. Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J Clin Nutr. 2012;95(1):130–6. https://doi.org/10.3945/ajcn.111.016212.

    Article  CAS  PubMed  Google Scholar 

  24. Xylinas E, Robinson BD, Kluth LA, et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol. 2014;40(1):121–7. https://doi.org/10.1016/j.ejso.2013.08.023.

    Article  CAS  PubMed  Google Scholar 

  25. Necchi A, Lo Vullo S, Giannatempo P, et al. Association of androgen receptor expression on tumor cells and PD-L1 expression in muscle-invasive and metastatic urothelial carcinoma: insights for clinical research. Clin Genitourin Cancer. 2017. https://doi.org/10.1016/j.clgc.2017.09.016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skala SL, Liu TY, Udager AM, Weizer AZ, Montgomery JS, Palapattu GS, et al. Programmed death-ligand 1 expression in upper tract urothelial carcinoma. Eur Urol Focus. 2017;3(4–5):502–9. https://doi.org/10.1016/j.euf.2016.11.011.

    Article  PubMed  Google Scholar 

  27. Wu CT, Chen WC, Chang YH, Lin WY, Chen MF. The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep. 2016;6:19740. https://doi.org/10.1038/srep19740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang B, Yu W, Feng X, et al. Prognostic significance of PD-L1 expression on tumor cells and tumor-infiltrating mononuclear cells in upper tract urothelial carcinoma. Med Oncol. 2017;34(5):94. https://doi.org/10.1007/s12032-017-0941-2.

    Article  CAS  PubMed  Google Scholar 

  29. Yaguchi T, Kawakami Y. Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation. Int Immunol. 2016;28(8):393–9. https://doi.org/10.1093/intimm/dxw030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Acuff NV, Peeks AR, et al. Tumor progression locus 2 (Tpl2) activates the mammalian target of rapamycin (mTOR) pathway, inhibits forkhead box P3 (FoxP3) expression, and limits regulatory T cell (Treg) immunosuppressive functions. J Biol Chem. 2016;291(32):16802–15. https://doi.org/10.1074/jbc.M116.718783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol. 2018;96(1):21–33. https://doi.org/10.1111/imcb.1003.

    Article  CAS  PubMed  Google Scholar 

  32. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  Google Scholar 

  33. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  Google Scholar 

  34. Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ. PD-L1. J Clin Pathol. 2018;71(3):189–94. https://doi.org/10.1136/jclinpath-2017-204853.

    Article  PubMed  Google Scholar 

  35. Wang Y, Wu L, Tian C, Zhang Y. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas. Ann Hematol. 2018;97(2):229–37. https://doi.org/10.1007/s00277-017-3176-6.

    Article  CAS  PubMed  Google Scholar 

  36. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33:23–35. https://doi.org/10.1016/j.coi.2015.01.006.

    Article  CAS  PubMed  Google Scholar 

  37. Seifert AM, Zeng S, Zhang JQ, et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2017;23(2):454–65. https://doi.org/10.1158/1078-0432.ccr-16-1163.

    Article  CAS  PubMed  Google Scholar 

  38. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26. https://doi.org/10.1056/NEJMoa1613683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lavoie JM, Bidnur S, Black PC, Eigl BJ. Expanding immunotherapy options for bladder cancer: commentary on: pembrolizumab as second-line therapy for advanced urothelial carcinoma. Urology. 2017;106:1–2. https://doi.org/10.1016/j.urology.2017.04.001.

    Article  PubMed  Google Scholar 

  40. Hanna KS. A review of immune checkpoint inhibitors for the management of locally advanced or metastatic urothelial carcinoma. Pharmacotherapy. 2017;37(11):1391–405. https://doi.org/10.1002/phar.2033.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financed by grants from the National Natural Science Foundation of China (No. 81402430), the Collaborative Innovation Project of Guangzhou Education Bureau (No. 1201620011) and the Guangzhou Science Technology and Innovation Commission (No. 201704020193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zeng.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All the data involved in this study were extracted from published articles.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Chen, Y., Duan, X. et al. The clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis. Clin Exp Med 19, 407–416 (2019). https://doi.org/10.1007/s10238-019-00572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00572-9

Keywords

Navigation