Clinical and Experimental Medicine

, Volume 18, Issue 3, pp 355–361 | Cite as

The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema

  • Francesco Arcoleo
  • Mariangela Lo Pizzo
  • Gabriella Misiano
  • Salvatore Milano
  • Giuseppina Colonna Romano
  • Vito Muggeo
  • Enrico Cillari
Original Article


Hereditary angioedema (HAE) is a rare autosomic-dominant disorder characterized by a deficiency of C1 esterase inhibitor which causes episodic swellings of subcutaneous tissues, bowel walls and upper airways that are disabling and potentially life-threatening. We evaluated n = 17 patients with confirmed HAE diagnosis during attack and remission state and n = 19 healthy subjects. The samples were tested for a panel of IL (Interleukin)-17-type cytokines (IL-1β, IL-6, IL-10, granulocyte–macrophage colony stimulating factor (GM-CSF), IL-17, IL-21, IL-22, IL-23) and transforming growth factor-beta (TGF-β) subtypes. Data indicate that there are variations of cytokine levels in HAE subjects comparing the condition during the crisis respect to the value in the remission phase, in particular type 17 signature cytokines are increased, whereas IL-23 is unmodified and TGF-β3 is significantly reduced. When comparing healthy and HAE subjects in the remission state, we found a significant difference for IL-17, GM-CSF, IL-21, TGF-β1 and TGF-β2 cytokines. These results confirm and extend our previous findings indicating that in HAE there is operating an inflammatory activation process, which involves also T helper 17 (Th17) cytokines and TGF-β isoforms, associated with localized angioedema attacks and characterized by elevated bradykinin levels.


Hereditary angioedema C1 esterase inhibitor Cytokines 



This study was funded by Hospital funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.CrossRefGoogle Scholar
  2. 2.
    Cicardi M, Banerji A, Bracho F, et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. 2010;363(6):532–41.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Longhurst H, Cicardi M. Hereditary angioedema. Lancet. 2012;379:474–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Zuraw B. Hereditary angioedema. N Engl J Med. 2008;359:1027–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.CrossRefGoogle Scholar
  8. 8.
    Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).CrossRefPubMedGoogle Scholar
  13. 13.
    Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.PubMedGoogle Scholar
  14. 14.
    Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.CrossRefPubMedGoogle Scholar
  15. 15.
    Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.PubMedGoogle Scholar
  18. 18.
    Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.CrossRefPubMedGoogle Scholar
  19. 19.
    Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Romagnani S. Human Th17 cells. Arthr Res Therapy. 2008;10(2):206 (Review).CrossRefGoogle Scholar
  22. 22.
    Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMedGoogle Scholar
  23. 23.
    McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).CrossRefPubMedGoogle Scholar
  25. 25.
    Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32(12):603–11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.CrossRefGoogle Scholar
  27. 27.
    Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMedGoogle Scholar
  32. 32.
    McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.CrossRefGoogle Scholar
  34. 34.
    McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Xu J, Yang Y, Qiu G, et al. c-Maf regulates IL-10 expression during Th17 polarization. J Immunol. 2009;182(10):6226–36.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.CrossRefGoogle Scholar
  42. 42.
    Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.CrossRefGoogle Scholar
  44. 44.
    Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.CrossRefPubMedGoogle Scholar
  46. 46.
    Hofman ZL, Relan A, Hack CE. C-rective protein levels in hereditary angioedema. Clin Exp Immunol. 2014;177:280–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Patologia Clinica Presidio Ospedaliero V. CervelloOspedali Riuniti Villa Sofia-CervelloPalermoItaly
  2. 2.Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED)University of PalermoPalermoItaly
  3. 3.Dipartimento Scienze Economiche, Aziendali e StatisticheUniversity of PalermoPalermoItaly
  4. 4.Dipartimento Immunologia AllergologiaIstituto Medico Europeo (ISME)PalermoItaly

Personalised recommendations