Skip to main content

Advertisement

Log in

TRAF6 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

TNF receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been reported to be associated with the oncogenesis of various tumors including pancreatic cancer, but the underlying mechanisms remain unknown. Here, we found that knocking down the expression of TRAF6 impaired YAP signaling. Moreover, TRAF6 promoted the migration and colony formation of pancreatic cancer cells through YAP. Then, we found that TRAF6 interacted with and promoted the ubiquitination and degradation of MST1, and the expression of TRAF6 and MST1 was negatively correlated in primary human pancreatic cancer samples. Our results reveal that TRAF6 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer, suggesting that TRAF6 could be a possible E3 ligase of MST1 and a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. The Lancet. 2016;388:73–85.

    Article  CAS  Google Scholar 

  3. Baud V, Liu Z-G, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13:1297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin Q, Lin S-C, Lamothe B, et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol. 2009;16:658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell. 2000;103:351–61.

    Article  CAS  PubMed  Google Scholar 

  6. Yang W-L, Wang J, Chan C-H, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi C-S, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal. 2010;3:ra42.

    PubMed  PubMed Central  Google Scholar 

  8. Fang J, Bolanos LC, Choi K, et al. Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat Immunol. 2017;18:236–45.

    Article  CAS  PubMed  Google Scholar 

  9. Starczynowski DT, Lockwood WW, Deléhouzée S, et al. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer. J Clin Invest. 2011;121:4095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng Q, Zheng M, Liu H, et al. TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Mol Cell Biochem. 2012;371:177–86.

    Article  CAS  PubMed  Google Scholar 

  11. Yao F, Han Q, Zhong C, Zhao H. TRAF6 promoted the tumorigenicity of esophageal squamous cell carcinoma. Tumour Biol. 2013;34:3201–7.

    Article  CAS  PubMed  Google Scholar 

  12. Rong Y, Wang D, Wu W, et al. TRAF6 is over-expressed in pancreatic cancer and promotes the tumorigenicity of pancreatic cancer cells. Med Oncol. 2014;31:260.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao B, Li L, Lei Q, Guan K-L. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao B, Tumaneng K, Guan K-L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gumbiner BM, Kim N-G. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014;127:709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong W, Guan K-L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012;23:785–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oudhoff MJ, Freeman SA, Couzens AL, et al. Control of the hippo pathway by Set7-dependent methylation of yap. Dev Cell. 2013;26:188–94.

    Article  CAS  PubMed  Google Scholar 

  19. Lv H, Dong W, Cao Z, et al. TRAF6 is a novel NS3-interacting protein that inhibits classical swine fever virus replication. Sci Rep. 2017;7:6737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mccain J. The cancer genome atlas: new weapon in old war? Biotechnol Healthc. 2006;3(2):46–51.

    PubMed  PubMed Central  Google Scholar 

  22. Lonsdale J, Thomas J, Salvatore M, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;13(5):307–8.

    Google Scholar 

  23. Qin F, Jing T, Zhou D, Chen L. Mst1 and Mst2 kinases: regulations and diseases. Cell Biosci. 2013;3:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song H, Mak KK, Topol L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci. 2010;107:1431–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Glantschnig H, Rodan GA, Reszka AA. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem. 2002;277:42987–96.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou D, Conrad C, Xia F, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress the development of hepatocellular carcinoma through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16:425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bassères D, Baldwin A. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.

    Article  CAS  PubMed  Google Scholar 

  29. Lv Y, Kim K, Sheng Y, et al. YAP controls endothelial activation and vascular inflammation through TRAF6. Circ Res. 2018;123:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant No. 81401923) and the Program of Shanghai Subject Chief Scientist (Grant No. 17XD1401200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefei Rong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ja., Kuang, T., Pu, N. et al. TRAF6 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer. Clin Exp Med 19, 211–218 (2019). https://doi.org/10.1007/s10238-018-00543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-00543-6

Keywords

Navigation