Skip to main content
Log in

Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Xanthine oxidase (XO) is an important enzyme responsible for conversion of purine bases to uric acid and represents the major source of reactive oxygen species (ROS) production in circulation. Since pathophysiological mechanism of the relationship between XO activity and urinary albumin excretion (UAE) rate is not well elucidated, we aimed to investigate this association in patients with diabetes mellitus type 2 (DM2). In addition, we wanted to examine whether uric acid itself plays an independent role in albuminuria onset and progression, or it is only mediated through XO activity. A total of 83 patients with DM2 (of them 56.6% females) were included in this cross-sectional study. Anthropometric, biochemical parameters and blood pressure were obtained. Multivariate logistic regression analysis showed that uric acid and XO were the independent predictors for albuminuria onset in patients with DM2 [odds ratio (OR) 1.015, 95% CI (1.008–1.028), p = 0.026 and OR 1.015, 95% CI (1.006–1.026), p = 0.040, respectively]. Rise in uric acid for 1 µmol/L enhanced the probability for albuminuria by 1.5%. Also, elevation in XO activity for 1 U/L increased the probability for albuminuria for 1.5%. A total of 66.7% of variation in UAE could be explained with this Model. Both XO and uric acid are independently associated with albuminuria in diabetes. Better understanding of pathophysiological relationship between oxidative stress and albuminuria could lead to discoveries of best pharmacological treatment of XO- and/or uric acid-induced ROS, in order to prevent albuminuria onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res. 2016;2016:7047238. https://doi.org/10.1155/2016/7047238.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Papaetis GS, Papakyriakou P, Panagiotou TN. Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns. Arch Med Sci. 2015;11(3):463–82. https://doi.org/10.5114/aoms.2015.52350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fakhruddin S, Alanazi W, Jackson KE. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res. 2017;2017:8379327. https://doi.org/10.1155/2017/8379327.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bolignano D, Cernaro V, Gembillo G, Baggetta R, Buemi M, D’Arrigo G. Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS ONE. 2017;12(6):e0178699. https://doi.org/10.1371/journal.pone.0178699.

    Article  PubMed  PubMed Central  Google Scholar 

  5. George J, Struthers A. The role of urate and xanthine oxidase in vascular oxidative stress: future directions. Ther Clin Risk Manag. 2009;5:799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boban M, Kocic G, Radenkovic S, et al. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Ren Fail. 2014;36(4):613–8. https://doi.org/10.3109/0886022X.2014.882240.

    Article  CAS  PubMed  Google Scholar 

  7. Tam HK, Kelly AS, Metzig AM, Steinberger J, Johnson LA. Xanthine oxidase and cardiovascular risk in obese children. Child Obes. 2014;10(2):175–80. https://doi.org/10.1089/chi.2013.0098.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feoli AM, Macagnan FE, Piovesan CH, Bodanese LC, Siqueira IR. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session. Oxidative Med Cell Longev. 2014;2014:587083. https://doi.org/10.1155/2014/587083.

    Article  Google Scholar 

  9. Baskol G, Baskol M, Kocer D. Oxidative stress and antioxidant defenses in serum of patients with non-alcoholic steatohepatitis. Clin Biochem. 2007;40(11):776–80. https://doi.org/10.1016/j.clinbiochem.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  10. Raghuvanshi R, Kaul A, Bhakuni P, Mishra A, Misra MK. Xanthine oxidase as a marker of myocardial infarction. Indian J Clin Biochem. 2007;22(2):90–2. https://doi.org/10.1007/BF02913321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediat Inflamm. 2016;2016:8603164. https://doi.org/10.1155/2016/8603164.

    Article  Google Scholar 

  12. Miric DJ, Kisic BM, Filipovic-Danic S, et al. Xanthine oxidase activity in type 2 Diabetes mellitus patients with and without diabetic peripheral neuropathy. J Diabetes Res. 2016;2016:4370490. https://doi.org/10.1155/2016/4370490.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klisic A, Kavaric N, Jovanovic M, et al. Association between unfavorable lipid profile and glycemic control in patients with type 2 diabetes mellitus. J Res Med Sci. 2017;22:122. https://doi.org/10.4103/jrms.JRMS_284_17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klisic A, Isakovic A, Kocic G, et al. Relationship between oxidative stress, inflammation and dyslipidemia with Fatty Liver Index in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2017;125:1–8. https://doi.org/10.1055/s-0043-118667.

    Article  Google Scholar 

  15. Kavaric N, Klisic A, Ninic A. Are Visceral Adiposity Index and lipid accumulation product reliable indices for metabolic disturbances in patients with type 2 diabetes mellitus? J Clin Lab Anal. 2017. https://doi.org/10.1002/jcla.22283.

    PubMed  Google Scholar 

  16. Klisic A, Kavaric N, Jovanovic M, Soldatovic I, Gligorovic-Barhanovic N, Kotur-Stevuljevic J. Bioavailable testosterone is independently associated with Fatty Liver Index in postmenopausal women. Arch Med Sci. 2017;5(13):1188–96. https://doi.org/10.5114/aoms.2017.68972.

    Article  Google Scholar 

  17. Hopkins WG. Estimating sample size for magnitude-based inferences. Sportscience. 2006;10:63–70.

    Google Scholar 

  18. Bland JM, Altman DG. Transformations, means and confidence intervals. BMJ. 1996;312:1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.

    Article  CAS  PubMed  Google Scholar 

  20. Liang CC, Lin PC, Lee MY, et al. Association of serum uric acid concentration with diabetic retinopathy and albuminuria in Taiwanese patients with type 2 diabetes mellitus. Int J Mol Sci. 2016;17(8):1248. https://doi.org/10.3390/ijms17081248.

    Article  PubMed Central  Google Scholar 

  21. Yan D, Tu Y, Jiang F, et al. Uric acid is independently associated with diabetic kidney disease: a cross-sectional study in a Chinese population. PLoS ONE. 2015;10(6):e0129797. https://doi.org/10.1371/journal.pone.0129797.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nomura J, Busso N, Ives A, et al. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS ONE. 2013;8(9):e75527. https://doi.org/10.1371/journal.pone.0075527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta. 2014;1842(9):1502–17. https://doi.org/10.1016/j.bbadis.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  24. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60(5):1148–56. https://doi.org/10.1161/HYPERTENSIONAHA.112.196980.

    Article  CAS  PubMed  Google Scholar 

  25. Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Ren Physiol. 2002;282(6):F991–7. https://doi.org/10.1152/ajprenal.00283.2001.

    Article  CAS  Google Scholar 

  26. Ahmad A, Manjrekar P, Yadav C, Agarwal A, Srikantiah RM, Hegde A. Evaluation of ischemia-modified albumin, malondialdehyde, and advanced oxidative protein products as markers of vascular injury in diabetic nephropathy. Biomark Insights. 2016;11:63–8. https://doi.org/10.4137/BMI.S39053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piwowar A, Knapik-Kordecka M, Warwas M. Comparison of the usefulness of plasma levels of oxidatively modified forms of albumin in estimating kidney dysfunction in diabetic patients. Clin Investig Med. 2010;33(2):E109.

    Article  CAS  Google Scholar 

  28. Ruiz-Hurtado G, Condezo-Hoyos L, Pulido-Olmo H, et al. Development of albuminuria and enhancement of oxidative stress during chronic renin–angiotensin system suppression. J Hypertens. 2014;32(10):2082–91. https://doi.org/10.1097/HJH.0000000000000292.

    Article  CAS  PubMed  Google Scholar 

  29. Kachhawa K, Agrawal D, Rath B, Kumar S. Association of lipid abnormalities and oxidative stress with diabetic nephropathy. J Integr Nephrol Androl. 2017;4:3–9. https://doi.org/10.4103/jina.jina_1_17.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported in part by a grant from the Ministry of Education, Science and Technological Development, Republic of Serbia (Project Number 175035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Klisic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Ethical Committee of Primary Health Care Center in Podgorica, Montenegro, and the research was carried out in compliance with the Declaration of Helsinki.

Informed consent

All the participants included in this study provided written informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klisic, A., Kocic, G., Kavaric, N. et al. Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2. Clin Exp Med 18, 283–290 (2018). https://doi.org/10.1007/s10238-017-0483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-017-0483-0

Keywords

Navigation