Skip to main content

Advertisement

Log in

Cycling CD34 expression in subpopulations of head and neck squamous cell carcinoma cell lines is involved in radioresistance and change in cytokeratin expression profile

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The expression of the hair follicle stem cell marker CD34 was analyzed in five different head and neck squamous cell carcinoma (HNSCC) cell lines with different antibodies. All HNSCC cell lines expressed CD34 on their cell surface. After cell cycle synchronization via serum starvation, we observed cyclic CD34 expression in HNSCC cells dependent on cell cycle progression via immunofluorescent staining and flow cytometric analysis. Investigation of the CD34(+) and CD34(−) HNSCC populations revealed most of the cells in S-phase and G2/M-Phase in CD34(+) cells in contrast to CD34(−) cells. Knockdown of CD34 in HNSCC cells led to diminished clonal expansion in a colony forming assay after subjecting the cells to ionizing radiation. Furthermore, knockdown of CD34 after cell cycle synchronization induced high CK1, CK4, and CK5 gene expression and downregulation of CK10 gene expression as shown by Taqman® quantitative PCR analysis. The expression levels of CK1 and CK10 were verified via western blot analysis. In summary, our study shows that CD34 plays a role during cell cycle progression of head and neck squamous cell carcinoma and additionally is involved in irradiation resistance and differentiation of malignant oral keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Sankila R, Ferlay J, Parkin DM. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002;38:99–166.

    Article  CAS  PubMed  Google Scholar 

  2. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–8. doi:10.1073/pnas.0610117104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krause M, Yaromina A, Eicheler W, Koch U, Baumann M. Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:7224–9. doi:10.1158/1078-0432.CCR-10-2639.

    Article  CAS  Google Scholar 

  4. Nielsen JS, McNagny KM. Novel functions of the CD34 family. J Cell Sci. 2008;121:3683–92. doi:10.1242/jcs.037507.

    Article  CAS  PubMed  Google Scholar 

  5. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63. doi:10.1126/science.1092436.

    Article  CAS  PubMed  Google Scholar 

  6. Morris RJ. A perspective on keratinocyte stem cells as targets for skin carcinogenesis. Differ Res Biol Divers. 2004;72:381–6. doi:10.1111/j.1432-0436.2004.07208004.x.

    Article  Google Scholar 

  7. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol. 2003;120:501–11. doi:10.1046/j.1523-1747.2003.12088.x.

    CAS  PubMed  Google Scholar 

  8. Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest. 2006;116:249–60. doi:10.1172/JCI26043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci USA. 2011;108:10544–9. doi:10.1073/pnas.1107807108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, Sharkis SJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood. 1994;84:691–701.

    CAS  PubMed  Google Scholar 

  11. Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol. 2000;150:1085–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res. 2000;302:145–53.

    Article  CAS  PubMed  Google Scholar 

  13. Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood. 1995;85:96–105.

    CAS  PubMed  Google Scholar 

  14. Hoang MP, Selim MA, Bentley RC, Burchette JL, Shea CR. CD34 expression in desmoplastic melanoma. J Cutan Pathol. 2001;28:508–12.

    Article  CAS  PubMed  Google Scholar 

  15. Nassif A, Tambara Filho R. Immunohistochemistry expression of tumor markers CD34 and P27 as a prognostic factor of clinically localized prostate adenocarcinoma after radical prostatectomy. Rev Col Bras Cir. 2010;37:338–44.

    Article  PubMed  Google Scholar 

  16. Kirchmann T, Prieto V, Smoller B. CD34 staining pattern distinguishes basal cell carcinoma from trichoepithelioma. Arch Dermatol. 1994;130:589–92.

    Article  CAS  PubMed  Google Scholar 

  17. Breza TS, Magro CM. CD34 expression in primary cutaneous malignant melanoma: apropos of a case and review of the aberrant melanoma phenotype. J Cutan Pathol. 2005;32:685–9. doi:10.1111/j.0303-6987.2005.00367.x.

    Article  PubMed  Google Scholar 

  18. Coston WMP, Loera S, Lau SK, Ishizawa S, Jiang Z, Wu C-L, et al. Distinction of hepatocellular carcinoma from benign hepatic mimickers using glypican-3 and CD34 Immunohistochemistry. Am J Surg Pathol. 2008;32:433–44. doi:10.1097/PAS.0b013e318158142f.

    Article  PubMed  Google Scholar 

  19. Kademani D, Lewis JT, Lamb DH, Rallis DJ, Harrington JR. Angiogenesis and CD34 expression as a predictor of recurrence in oral squamous cell carcinoma. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2009;67:1800–5. doi:10.1016/j.joms.2008.06.081.

    Article  Google Scholar 

  20. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer J Int Cancer. 1997;74:69–74.

    Article  CAS  Google Scholar 

  21. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ. The CD34-like protein PODXL and 6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 2009;113:816–26. doi:10.1182/blood-2007-12-128702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Snyder KA, Hughes MR, Hedberg B, Brandon J, Hernaez DC, Bergqvist P, et al. Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res. 2015;. doi:10.1186/s13058-015-0562-7.

    PubMed  PubMed Central  Google Scholar 

  23. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells Dayt Ohio. 2010;28:639–48. doi:10.1002/stem.318.

    Article  CAS  Google Scholar 

  24. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012;12:48. doi:10.1186/1471-2407-12-48.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boudard D, Vasselon C, Berthéas M-F, Jaubert J, Mounier C, Reynaud J, et al. Expression and prognostic significance of Bcl-2 family proteins in myelodysplastic syndromes. Am J Hematol. 2002;70:115–25. doi:10.1002/ajh.10108.

    Article  PubMed  Google Scholar 

  26. van Stijn A, van der Pol MA, Kok A, Bontje PM, Roemen GMJM, Beelen RHJ, et al. Differences between the CD34+ and CD34− blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica. 2003;88:497–508.

    PubMed  Google Scholar 

  27. Khan L, Kwong J, Nguyen J, Chow E, Zhang L, Culleton S, et al. Comparing baseline symptom severity and demographics over two time periods in an outpatient palliative radiotherapy clinic. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2012;20:549–55. doi:10.1007/s00520-011-1120-1.

    Google Scholar 

  28. Lee S-H, Chung M-K, Sohn Y-J, Lee Y-S, Kang K-S. Human hair follicle cells with the cell surface marker CD34 can regenerate new mouse hair follicles and located in the outer root sheath of immunodeficient nude mice. Int J Stem Cells. 2008;1:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res Off J Am Assoc Cancer Res. 1995;1:95–103.

    CAS  Google Scholar 

  30. Nitsch S, Pries R, Wollenberg B. Head and neck cancer triggers increased IL-6 production of CD34+ stem cells from human cord blood. In Vivo. 2007;21:493–8.

    CAS  PubMed  Google Scholar 

  31. Miyamoto Y, Hosotani R, Doi R, Wada M, Ida J, Tsuji S, et al. Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Res. 2001;21:2449–56.

    CAS  PubMed  Google Scholar 

  32. Coulombe PA, Omary MB. “Hard” and “soft” principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002;14:110–22.

    Article  CAS  PubMed  Google Scholar 

  33. Chao S-C, Tsai Y-M, Yang M-H, Lee JY-Y. A novel mutation in the keratin 4 gene causing white sponge naevus. Br J Dermatol. 2003;148:1125–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bauer K, Gosau M, Bosserhoff A, Reichert T, Bauer R. P-cadherin controls the differentiation of oral keratinocytes by regulating cytokeratin 1/10 expression via C/EBP-beta-mediated signaling. Differentiation. 2012;84:345–54. doi:10.1016/j.diff.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  35. Vaidya MM, Borges AM, Pradhan SA, Bhisey AN. Cytokeratin expression in squamous cell carcinomas of the tongue and alveolar mucosa. Eur J Cancer B Oral Oncol. 1996;32B:333–6.

    Article  CAS  PubMed  Google Scholar 

  36. Vaidya MM, Sawant SS, Borges AM, Ogale SB, Bhisey AN. Cytokeratin expression in precancerous lesions of the human oral cavity. Oral Oncol. 1998;34:261–4.

    Article  CAS  PubMed  Google Scholar 

  37. Flint A, Weiss SW. CD-34 and keratin expression distinguishes solitary fibrous tumor (fibrous mesothelioma) of pleura from desmoplastic mesothelioma. Hum Pathol. 1995;26:428–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maxi Bleicher for her brilliant technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bauer.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettl, T., Hautmann, M., Reichert, T.E. et al. Cycling CD34 expression in subpopulations of head and neck squamous cell carcinoma cell lines is involved in radioresistance and change in cytokeratin expression profile. Clin Exp Med 17, 565–574 (2017). https://doi.org/10.1007/s10238-016-0440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0440-3

Keywords

Navigation