Skip to main content

Advertisement

Log in

Intermedin ameliorates IgA nephropathy by inhibition of oxidative stress and inflammation

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) is the most frequent form of glomerulonephritis worldwide. The role of oxidative stress and inflammation in the pathogenesis of IgAN has been reported. Intermedin (IMD) is a newly discovered peptide that is closely related to adrenomedullin. We have recently reported that IMD can significantly reduce renal ischemia/reperfusion injury by diminishing oxidative stress and suppressing inflammation. The present study was designed to explore whether IMD ameliorates IgAN via oxidative stress- and inflammation-dependent mechanisms. Our results showed that IMD administration resulted in the prevention of albuminuria and ameliorated renal pathomorphological changes. These findings were associated with (1) decreased renal TGF-β1 and collagen IV expression, (2) an increased SOD level and reduced MDA level, (3) the inhibition of the renal activation of NF-κB p65 and (4) the downregulation of the expression of inflammatory factors (TNF-α, MCP-1 and MMP-9) in the kidney. These results indicate that IMD in the kidney protects against IgAN by reducing oxidative stress and suppressing inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Amico G. Natural history of idiopathic IgA nephropathy: Role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36(2):227–37.

    Article  PubMed  Google Scholar 

  2. Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002;347(10):738–48.

    Article  CAS  PubMed  Google Scholar 

  3. Koyama A, Igarashi M, Kobayashi M. Natural history and risk factors for immunoglobulin A nephropathy in Japan. Research Group on Progressive Renal Diseases. Am J Kidney Dis. 1997;29(4):526–32.

    Article  CAS  PubMed  Google Scholar 

  4. Alamartine E, Sabatier JC, Guerin C, Berliet JM, Berthoux F. Prognostic factors in mesangial IgA glomerulonephritis: An extensive study with univariate and multivariate analyses. Am J Kidney Dis. 1991;18(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  5. Camilla R, Suzuki H, Dapra V, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol. 2011;6:1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen JX, Zhou JF, Shen HC. Oxidative stress and damage induced by abnormal free radical reactions and IgA nephropathy. J Zhejiang Univ Sci B. 2005;6(1):61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kobori H, Katsurada A, Ozawa Y, et al. Enhanced intrarenal oxidative stress and angiotensinogen in IgA nephropathy patients. Biochem Biophys Res Commun. 2007;358(1):156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Camilla R, Suzuki H, Dapra V, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol. 2011;6(8):1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan LY, Leung JC, Lai KN. Novel mechanisms of tubulointerstitial injury in IgA nephropathy: A new therapeutic paradigm in the prevention of progressive renal failure. Clin Exp Nephrol. 2004;8(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  10. Kawasaki Y. The pathogenesis and treatment of IgA nephropathy. Fukushima J Med Sci. 2008;54(2):43–60.

    Article  CAS  PubMed  Google Scholar 

  11. Boyd JK, Cheung CK, Molyneux K, Feehally J, Barratt J. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012;81(9):833–43.

    Article  CAS  PubMed  Google Scholar 

  12. Cichon MA, Radisky DC. ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget. 2014;5(9):2827–38.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Long T, Liu G, Wang Y, Chen Y, Zhang Y, Qin D. TNF-alpha, erectile dysfunction, and NADPH oxidase-mediated ROS generation in corpus cavernosum in high-fat diet/streptozotocin-induced diabetic rats. J Sex Med. 2012;9(7):1801–14.

    Article  CAS  PubMed  Google Scholar 

  14. Yang SM, Ka SM, Hua KF, et al. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic Biol Med. 2013;61C:285–97.

    Article  Google Scholar 

  15. Kastl L, Sauer SW, Ruppert T, et al. TNF-alpha mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-kappaB activation in liver cells. FEBS Lett. 2014;588(1):175–83.

    Article  CAS  PubMed  Google Scholar 

  16. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem. 2004;279(8):7264–74.

    Article  CAS  PubMed  Google Scholar 

  17. Chang CL, Roh J, Hsu SY. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: A comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides. 2004;25(10):1633–42.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Kikuchi K, Maruyama Y, et al. Immunocytochemical localization of adrenomedullin 2/intermedin-like immunoreactivity in human hypothalamus, heart and kidney. Peptides. 2006;27(6):1383–9.

    Article  CAS  PubMed  Google Scholar 

  19. Morimoto R, Satoh F, Murakami O, et al. Expression of adrenomedullin2/intermedin in human brain, heart, and kidney. Peptides. 2007;28(5):1095–103.

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Ma P, Liu Y, et al. Intermedin attenuates LPS-induced inflammation in the rat testis. PLoS One. 2013;8(6):e65278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Li R, Qiao X, et al. Intermedin/adrenomedullin 2 protects against tubular cell hypoxia-reoxygenation injury in vitro by promoting cell proliferation and upregulating cyclin D1 expression. Nephrology (Carlton). 2013;18(9):623–32.

    Article  CAS  Google Scholar 

  22. Qiao X, Li RS, Li H, et al. Intermedin protects against renal ischemia-reperfusion injury by inhibition of oxidative stress. Am J Physiol Renal Physiol. 2013;304(1):F112–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Peng DQ, Zhang J, et al. Extracellular signal-regulated kinase 1/2 activation is involved in intermedin1-53 attenuating myocardial oxidative stress injury induced by ischemia/reperfusion. Peptides. 2012;33(2):329–35.

    Article  PubMed  Google Scholar 

  24. Hagiwara M, Bledsoe G, Yang ZR, Smith RJ, Chao L, Chao J. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol. 2008;295(6):F1735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Bian Y, Zhang N, et al. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovasc Diabetol. 2013;12(1):91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen L, Kis B, Hashimoto H, et al. Adrenomedullin 2 protects rat cerebral endothelial cells from oxidative damage in vitro. Brain Res. 2006;1086(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  27. Tian J, Wang Y, Liu X, Zhou X, Li R. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. Exp Biol Med (Maywood). 2014 [Epub ahead of print].

  28. Tian J, Wang Y, Zhou X, et al. Rapamycin slows IgA nephropathy progression in the rat. Am J Nephrol. 2014;39(3):218–29.

    Article  CAS  PubMed  Google Scholar 

  29. Ohashi N, Urushihara M, Kobori H. Activated intrarenal reactive oxygen species and renin angiotensin system in IgA nephropathy. Minerva Urol Nefrol. 2009;61(1):55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohashi N, Katsurada A, Miyata K, et al. Role of activated intrarenal reactive oxygen species and renin-angiotensin system in IgA nephropathy model mice. Clin Exp Pharmacol Physiol. 2009;36(8):750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ashizawa M, Miyazaki M, Abe K, et al. Detection of nuclear factor-kappaB in IgA nephropathy using Southwestern histochemistry. Am J Kidney Dis. 2003;42(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  32. Silva GE, Costa RS, Ravinal RC, et al. NF-kB expression in IgA nephropathy outcome. Dis Markers. 2011;31(1):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong F, Taylor MM, Samson WK, Ren J. Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C- and protein kinase A-dependent pathway in murine ventricular myocytes. J Appl Physiol. 2006;101(3):778–84.

    Article  CAS  PubMed  Google Scholar 

  34. Yang JH, Cai Y, Duan XH, et al. Intermedin 1-53 inhibits rat cardiac fibroblast activation induced by angiotensin II. Regul Pept. 2009;158(1–3):19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Pan CS, Yang JH, Cai DY, et al. Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2. Peptides. 2005;26(9):1640–6.

    Article  CAS  PubMed  Google Scholar 

  36. Segarra A. Progress in understanding the pathogenesis of IgA nephropathy: New perspectives for the near future? Nefrologia. 2010;30(5):501–7.

    CAS  PubMed  Google Scholar 

  37. Kobori H, Katsurada A, Ozawa Y, et al. Enhanced intrarenal oxidative stress and angiotensinogen in IgA nephropathy patients. Biochem Biophys Res Commun. 2007;358(1):156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vas T, Wagner Z, Jenei V, et al. Oxidative stress and non-enzymatic glycation in IgA nephropathy. Clin Nephrol. 2005;64(5):343–51.

    Article  CAS  PubMed  Google Scholar 

  39. Ohashi N, Katsurada A, Miyata K, et al. Role of activated intrarenal reactive oxygen species and renin-angiotensin system in IgA nephropathy model mice. Clin Exp Pharmacol Physiol. 2009;36(8):750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coppo R, Camilla R, Alfarano A, et al. Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int. 2009;75(5):536–41.

    Article  CAS  PubMed  Google Scholar 

  41. Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, et al. Early prediction of IgA nephropathy progression: Proteinuria and AOPP are strong prognostic markers. Kidney Int. 2004;66(4):1606–12.

    Article  CAS  PubMed  Google Scholar 

  42. Hua KF, Yang SM, Kao TY, et al. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-kappaB/NLRP3 pathway. PLoS One. 2013;8(10):e77794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roebuck KA. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: Differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med. 1999;4(3):223–30.

    CAS  PubMed  Google Scholar 

  44. Yang SM, Ka SM, Hua KF, et al. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic Biol Med. 2013;61C:285–97.

    Article  Google Scholar 

  45. Miki H, Funato Y. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem. 2012;151(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  46. Loukili N, Rosenblatt-Velin N, Rolli J, et al. Oxidants positively or negatively regulate nuclear factor kappaB in a context-dependent manner. J Biol Chem. 2010;285(21):15746–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryan KA, Smith MJ, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun. 2004;72(4):2123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mori H, Kaneko Y, Narita I, et al. Monocyte chemoattractant protein-1 A-2518G gene polymorphism and renal survival of Japanese patients with immunoglobulin a nephropathy. Clin Exp Nephrol. 2005;9(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  49. Torres DD, Rossini M, Manno C, et al. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int. 2008;73(3):327–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30971380), the Doctoral Startup Research Fund of Shanxi Medical University (03201302), the Science and Technology Innovation Fund of Shanxi Medical University (01201403) and 331 fund projects of Basic Medical College, Shanxi Medical University (201406).

Conflict of interest

We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongshan Li.

Additional information

Jihua Tian have contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tian, J., Guo, H. et al. Intermedin ameliorates IgA nephropathy by inhibition of oxidative stress and inflammation. Clin Exp Med 16, 183–192 (2016). https://doi.org/10.1007/s10238-015-0351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0351-8

Keywords

Navigation