Skip to main content
Log in

Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia

Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

This study is to investigate a biological activity of Acinetobacter baumannii isolates from sputum specimens of 121 elderly patients with hospital-acquired pneumonia. The ability of the isolates to form biofilms was quantitatively assessed by crystal violet staining, and adhesive property was examined using Giemsa staining. Biofilm-forming ability by the isolates was employed to test antimicrobial resistance and examine sources and clinical manifestations. The isolates grew as biofilm on abiotic surface at the indicated temperatures after a 48 h of incubation. 27.3 % of the isolates were strongly biofilm-positive in the samples, and 84.8 % displayed high adhesion ability (P < 0.05). All of the isolates showed antibiotic resistance at different levels, and the isolates produced strong biofilm exhibited low-level resistance to gentamicin, minocycline and ceftazidime (P < 0.05). The patients’ experience in ICU, use of antibiotics and estimation of APACHE II (<17) were related to incidence of strong biofilm formation with no clinical manifestations found in the study. All clinical isolates are able to form biofilms which refer to adhesive efficiency and antibiotic resistance. Patient experiences in ICU surveillance, use of antibiotics and APACHE II scores are involved in biofilm-forming ability by the nosocomial pathogen derived from the hospitalized patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Karakoc C, Tekin R, Yeşilbağ Z, Cagatay A. Risk factors for mortality in patients with nosocomial Gram-negative rod bacteremia. Eur Rev Med Pharmacol Sci. 2013;17:951–7.

    CAS  PubMed  Google Scholar 

  2. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5:939–51.

    Article  CAS  PubMed  Google Scholar 

  3. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51:3471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montefour K, Frieden J, Hurst S, et al. Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Crit Care Nurse. 2008;28:15–25.

    PubMed  Google Scholar 

  5. Alsan M, Klompas M. Acinetobacter baumannii: an emerging and important pathogen. JCOM. 2010;17:363–9.

    PubMed  PubMed Central  Google Scholar 

  6. Sebeny PJ, Riddle MS, Petersen K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin Infect Dis. 2008;47:444–9.

    Article  PubMed  Google Scholar 

  7. Chen BY, He LX, Hu BJ. Expert consensus for the diagnosis, therapy and prevention of Acinetobacter baumannii infection in China. Chin Med J. 2012;92:76–82.

    Google Scholar 

  8. American Thoracic Society-Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.

    Article  Google Scholar 

  9. Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol. 2014;37:119–27.

    CAS  PubMed  Google Scholar 

  10. Lee HW, Koh YM, Kim J, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008;14:49–54.

    Article  CAS  PubMed  Google Scholar 

  11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement[S]. 2007;29: M100-16.

  12. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beck-Sague CM, Jarvis WR, Brook JH, et al. Epidemic bacteremia due to Acinetobacter baumannii in five intensive care units. Am J Epidemiol. 1990;132:723–33.

    CAS  PubMed  Google Scholar 

  14. Hirai Y. Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J Hosp Infect. 1991;19:191–200.

    Article  CAS  PubMed  Google Scholar 

  15. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    Article  CAS  PubMed  Google Scholar 

  16. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  PubMed  Google Scholar 

  17. Beachey EH, Giampapa CS, Abraham SN. Bacterial adherence. Adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. Am Rev Respir Dis. 1988;138:S45–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lee JC, Koerten H, van den Broek P, et al. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res Microbiol. 2006;157:360–6.

    Article  CAS  PubMed  Google Scholar 

  19. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperoneeusher pili assembly system. Microbiology. 2003;149:3473–84.

    Article  CAS  PubMed  Google Scholar 

  20. Van Looveren M, Goossens H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect. 2004;10:684–704.

    Article  PubMed  Google Scholar 

  21. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45:3375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother. 2003;52:629–35.

    Article  CAS  PubMed  Google Scholar 

  23. Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol. 2000;290:27–35.

    Article  CAS  PubMed  Google Scholar 

  24. Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009;4:273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joung MK, Kwon KT, Kang CI, et al. Impact of inappropriate antimicrobial therapy on outcome in patients with hospital-acquired pneumonia caused by Acinetobacter baumannii. J Infect. 2010;61:212–8.

    Article  PubMed  Google Scholar 

  26. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqun Fang.

Additional information

Duchao Zhang and Jingjing Xia are the co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xia, J., Xu, Y. et al. Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clin Exp Med 16, 73–80 (2016). https://doi.org/10.1007/s10238-014-0333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0333-2

Keywords

Navigation