Skip to main content
Log in

Deregulation of MYC and TP53 through genetic and epigenetic alterations in gallbladder carcinomas

  • Letter to the Editor
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Gallbladder cancer is a rare malignancy and presents a poor prognosis. MYC and p53 have been implicated in gallbladder carcinogenesis. However, little is known about the molecular mechanisms involved in their regulation in this neoplasia. Here, we evaluated the MYC and TP53 copy numbers in gallbladder tumors and their possible association with protein expression. We also investigated whether MYC may be controlled by mutations and DNA promoter methylation. In the present study, 15 samples of invasive gallbladder carcinomas and six control samples were analyzed. On the other hand, the expression of MYC and p53 was more frequent in gallbladder carcinomas than in control samples (p = 0.002, p = 0.046, respectively). Gain of copies of the MYC and TP53 genes was detected in 86.7 and 50 % of gallbladder carcinomas, respectively. MYC and TP53 amplifications were associated with immunoreactivity of their protein (p = 0.029, p = 0.001, respectively). MYC hypomethylation was only detected in tumoral samples and was associated with its protein expression (p = 0.029). MYC mutations were detected in 80 % of tumor samples. The G allele at rs117856857 was associated with the presence of gallbladder tumors (p = 0.019) and with MYC expression (p = 0.044). Moreover, two tumors presented a pathogenic mutation in MYC exon 2 (rs28933407). Our study highlights that the gain of MYC and TP53 copies seems to be a frequent finding in gallbladder cancer. In addition, gain of copies, hypomethylation and point mutations at MYC may contribute to overexpression of its protein in this type of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Wernberg JA, Lucarelli DD. Gallbladder cancer. Surg Clin N Am. 2014;94(2):343–60. doi:10.1016/j.suc.2014.01.009.

    Article  PubMed  Google Scholar 

  2. Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi:10.1101/gad.1067003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pelengaris S, Khan M. The many faces of c-MYC. Arch Biochem Biophys. 2003;416(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Jiang L, Yang B, Liao D. The roles of VEGF and C-myc in occurrence, development and metastasis of gallbladder carcinoma. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003;20(1):68–70.

    CAS  PubMed  Google Scholar 

  5. Roa I, Araya JC, Shiraishi T, et al. Gallbladder carcinoma: expression of the c-myc and ras-p-21 oncogene products. Rev Med Chil. 1994;122(7):754–9.

    CAS  PubMed  Google Scholar 

  6. Yukawa M, Fujimori T, Hirayama D, et al. Expression of oncogene products and growth factors in early gallbladder cancer, advanced gallbladder cancer, and chronic cholecystitis. Hum Pathol. 1993;24(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  7. Ooi A, Suzuki S, Nakazawa K, et al. Gene amplification of Myc and its coamplification with ERBB2 and EGFR in gallbladder adenocarcinoma. Anticancer Res. 2009;29(1):19–26.

    PubMed  Google Scholar 

  8. Hamada H, Tashima Y, Kisaka Y, et al. Sophisticated framework between cell cycle arrest and apoptosis induction based on p53 dynamics. PLoS ONE. 2009;4(3):e4795. doi:10.1371/journal.pone.0004795.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shu GS, Lv F, Yang ZL, Miao XY. Immunohistochemical study of PUMA, c-Myb and p53 expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Int J Clin Oncol. 2013;18(4):641–50. doi:10.1007/s10147-012-0431-7.

    Article  CAS  PubMed  Google Scholar 

  10. Sessa F, Furlan D, Genasetti A, Billo P, Feltri M, Capella C. Microsatellite instability and p53 expression in gallbladder carcinomas. Diagn Mol Pathol. 2003;12(2):96–102.

    Article  CAS  PubMed  Google Scholar 

  11. Oohashi Y, Watanabe H, Ajioka Y, Hatakeyama K. p53 immunostaining distinguishes malignant from benign lesions of the gall-bladder. Pathol Int. 1995;45(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  12. Sobin LH, Gopodarowicz MK, Wittekind C. TNM classification of malignant tumors. 7th ed. Oxford: Wiley-Blackwell; 2009.

    Google Scholar 

  13. Calcagno DQ, Leal MF, Seabra AD, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12(38):6207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva TC, Leal MF, Calcagno DQ, et al. hTERT, MYC and TP53 deregulation in gastric preneoplastic lesions. BMC Gastroenterol. 2012;12:85. doi:10.1186/1471-230X-12-85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pereira CB, Leal MF, de Souza CR, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE. 2013;8(3):e60576. doi:10.1371/journal.pone.0060576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yemelyanova A, Vang R, Kshirsagar M, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011;24(9):1248–53. doi:10.1038/modpathol.2011.85.

    Article  CAS  PubMed  Google Scholar 

  17. Itoi T, Watanabe H, Yoshida M, Ajioka Y, Nishikura K, Saito T. Correlation of p53 protein expression with gene mutation in gall-bladder carcinomas. Pathol Int. 1997;47(8):525–30.

    Article  CAS  PubMed  Google Scholar 

  18. Calcagno DQ, Freitas VM, Leal MF, et al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC gastroenterol. 2013;13(1):141. doi:10.1186/1471-230X-13-141.

    Article  PubMed  PubMed Central  Google Scholar 

  19. da de Costa JF, Leal MF, Silva TC, et al. Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS ONE. 2011;6(7):e21988. doi:10.1371/journal.pone.0021988.

    Article  Google Scholar 

  20. Leal MF, Calcagno DQ, Khayat AS, et al. hTERT and TP53 deregulation in intestinal-type gastric carcinogenesis in non-human primates. Clin exp med. 2013;13(3):221–4. doi:10.1007/s10238-012-0195-4.

    Article  CAS  PubMed  Google Scholar 

  21. Leal MF, Cirilo PD, Mazzotti TK, et al. Prohibitin expression deregulation in gastric cancer is associated with the 3’ untranslated region 1630 c > t polymorphism and copy number variation. PLoS ONE. 2014;9(5):e98583. doi:10.1371/journal.pone.0098583.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gustafsson U, Einarsson C, Eriksson LC, Gadaleanu V, Sahlin S, Tribukait B. DNA ploidy and S-phase fraction in carcinoma of the gallbladder related to histopathology, number of gallstones and survival. Anal Cell Pathol. 2001;23(3–4):143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Futakawa N, Kimura W, Ando H, Muto T, Esaki Y. Heterogeneity of DNA ploidy pattern in carcinoma of the gallbladder: primary and metastatic sites. Jpn J Cancer Res. 1997;88(9):886–94.

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto M, Oda N, Tahara E. DNA ploidy patterns in gallbladder adenocarcinoma. Jpn J Clin Oncol. 1990;20(1):83–6.

    CAS  PubMed  Google Scholar 

  25. Rosal-Texeira C, Leal MF, Calcagno DQ et al. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS ONE. 2013;8(5):e64420.

  26. Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14(39):5962–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. doi:10.1038/nbt.1685.

    Article  CAS  PubMed  Google Scholar 

  28. Du YP, Peng JS, Sun A, Tang ZH, Ling WH, Zhu HL. Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model. BMC Cancer. 2009;9:261. doi:10.1186/1471-2407-9-261.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharrard RM, Royds JA, Rogers S, Shorthouse AJ. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer. 1992;65(5):667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang JY, Zhu SS, Xiao SD, et al. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol. 1996;11(11):1079–82.

    Article  CAS  PubMed  Google Scholar 

  31. Fang JY, Xiao SD, Zhu SS, Yuan JM, Qiu DK, Jiang SJ. Relationship of plasma folic acid and status of DNA methylation in human gastric cancer. J Gastroenterol. 1997;32(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  32. Weng YR, Sun DF, Fang JY, Gu WQ, Zhu HY. Folate levels in mucosal tissue but not methylenetetrahydrofolate reductase polymorphisms are associated with gastric carcinogenesis. World J Gastroenterol. 2006;12(47):7591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, Chen WD, Papadopoulos N, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27(9):858–63. doi:10.1038/nbt.1559.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ryan KM, Birnie GD. Myc oncogenes: the enigmatic family. Biochem J. 1996;314(Pt 3):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; MCS and RRB) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; MFL) as grants and fellowship awards.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Ferreira Leal.

Additional information

Geraldo Ishak and Mariana Ferreira Leal have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, G., Leal, M.F., dos Santos, N.P.C. et al. Deregulation of MYC and TP53 through genetic and epigenetic alterations in gallbladder carcinomas. Clin Exp Med 15, 421–426 (2015). https://doi.org/10.1007/s10238-014-0311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0311-8

Keywords

Navigation