Skip to main content

Advertisement

Log in

Serum asymmetric dimethylarginine levels are independently associated with procollagen III N-terminal peptide in nonalcoholic fatty liver disease patients

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Although impaired synthesis and/or bioavailability of nitric oxide are considered to contribute to insulin resistance and the progression of liver disease in nonalcoholic fatty liver disease, role of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, has not been examined. We examined retrospectively which anthropometric and metabolic parameters were independently associated with serum levels of asymmetric dimethylarginine in nonalcoholic fatty liver disease. A total of 194 consecutive biopsy-proven nonalcoholic fatty liver disease patients with or without type 2 diabetes were enrolled. Serum asymmetric dimethylarginine levels in nonalcoholic fatty liver disease patients were significantly higher, irrespective of the presence or absence of diabetes, than those in healthy control. Multiple stepwise regression analysis showed that decreased total protein and procollagen N-terminal peptide levels, markers of advanced liver disease and hepatic fibrosis, respectively, were independently associated with asymmetric dimethylarginine levels in nonalcoholic fatty liver disease subjects without diabetes, whereas soluble form of receptor for advanced glycation end products and density ratio of liver to spleen in computed tomography were independent correlates of asymmetric dimethylarginine in diabetic patients. The present study suggests that asymmetric dimethylarginine may be associated with nonalcoholic fatty liver disease, especially subjects without diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vuppalanchi R, Chalasani N (2009) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49:306–317

    Article  PubMed Central  PubMed  Google Scholar 

  2. Teli MR, James OF, Burt AD et al (1995) The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 22:1714–1719

    Article  CAS  PubMed  Google Scholar 

  3. Dam-Larsen S, Franzmann M, Andersen IB et al (2004) Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 53:750–755

    Article  CAS  PubMed  Google Scholar 

  4. Matteoni CA, Younossi ZM, Gramlich T et al (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419

    Article  CAS  PubMed  Google Scholar 

  5. Chitturi S, Abeygunasekera S, Farrell GC et al (2002) NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35:373–379

    Article  CAS  PubMed  Google Scholar 

  6. Marchesini G, Brizi M, Bianchi G et al (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850

    Article  CAS  PubMed  Google Scholar 

  7. Bugianesi E, Moscatiello S, Ciaravella MF et al (2000) Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 16:1941–1951

    Article  Google Scholar 

  8. Petta S, Muratore C, Craxì A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41:615–625

    Article  CAS  PubMed  Google Scholar 

  9. Hyogo H, Yamagishi S (2008) Advanced glycation end products (AGEs) and their involvement in liver disease. Curr Pharm Des 14:969–972

    Article  CAS  PubMed  Google Scholar 

  10. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845

    Article  CAS  PubMed  Google Scholar 

  11. Bhatia LS, Curzen NP, Calder PC et al (2012) Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor? Eur Heart J 33:1190–1200

    Article  CAS  PubMed  Google Scholar 

  12. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  13. Yamagishi S, Matsui T (2011) Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol Res 64:187–194

    Article  CAS  PubMed  Google Scholar 

  14. Yamagishi S, Ueda S, Nakamura K et al (2008) Role of asymmetric dimethylarginine (ADMA) in diabetic vascular complications. Curr Pharm Des 14:2613–2618

    Article  CAS  PubMed  Google Scholar 

  15. Palomo I, Contreras A, Alarcón LM et al (2011) Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric Oxide 24:224–228

    Article  CAS  PubMed  Google Scholar 

  16. Abbasi F, Asagmi T, Cooke JP et al (2001) Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol 88:1201–1203

    Article  CAS  PubMed  Google Scholar 

  17. Sydow K, Mondon CE, Cooke JP (2005) Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med 10:S35–S43

    Article  PubMed  Google Scholar 

  18. Sydow K, Mondon CE et al (2008) Dimethylarginine dimethylaminohydrolase overexpression enhances insulin sensitivity. Arterioscler Thromb Vasc Biol 28:692–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Iwamoto K, Kanno K, Hyogo H et al (2008) Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol 43:298–300

    Article  CAS  PubMed  Google Scholar 

  20. Hyogo H, Yamagishi S, Iwamoto K et al (2007) Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2:1112–1119

    Article  Google Scholar 

  21. Yoshida T, Yamagishi S, Nakamura K et al (2008) Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product (AGE)-induced hepatic insulin resistance in vitro by suppressing Rac-1 activation. Horm Metab Res 40:620–625

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida T, Yamagishi S, Nakamura K et al (2006) Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia 49:3094–3099

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida T, Yamagishi S, Nakamura K et al (2006) Pigment epithelium-derived factor (PEDF) inhibits advanced glycation end product (AGE)-induced C-reactive protein expression in hepatoma cells by suppressing Rac-1 activation. FEBS Lett 580:2788–2796

    Article  CAS  PubMed  Google Scholar 

  24. Lu CW, Xiong Y, He P (2007) Dimethylarginine dimethylaminohydrolase-2 overexpression improves impaired nitric oxide synthesis of endothelial cells induced by glycated protein. Nitric Oxide 16:94–103

    Article  CAS  PubMed  Google Scholar 

  25. Ishibashi Y, Yamagishi SI, Matsui T et al (2012) Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 61:1067–1072

    Article  CAS  PubMed  Google Scholar 

  26. Yamagishi S, Ueda S, Okuda S (2007) A possible involvement of crosstalk between advanced glycation end products (AGEs) and asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor in accelerated atherosclerosis in diabetes. Med Hypotheses 69:922–924

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura K, Yamagishi S, Adachi H et al (2007) Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol Med 13:185–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nakamura K, Yamagishi S, Adachi H et al (2007) Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev 23:368–371

    Article  CAS  PubMed  Google Scholar 

  29. Thomas MC, Söderlund J, Lehto M et al (2011) Soluble receptor for AGE (RAGE) is a novel independent predictor of all-cause and cardiovascular mortality in type 1 diabetes. Diabetologia 54:2669–2677

    Article  CAS  PubMed  Google Scholar 

  30. Nin JW, Jorsal A, Ferreira I et al (2010) Higher plasma soluble receptor for advanced glycation end products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes 59:2027–2032

    Article  CAS  PubMed  Google Scholar 

  31. Yamagishi S, Matsui T (2010) Soluble form of a receptor for advanced glycation end products (sRAGE) as a biomarker. Front Biosci (Elite Ed) 2:1184–1195

    Article  Google Scholar 

  32. Nakamura T, Sato E, Fujiwara N et al (2011) Calcium channel blocker inhibition of AGE and RAGE axis limits renal injury in nondiabetic patients with stage I or II chronic kidney disease. Clin Cardiol 34:372–377

    Article  PubMed  Google Scholar 

  33. Nakamura T, Sato E, Fujiwara N et al (2011) Increased levels of soluble receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) are associated with death in patients with acute respiratory distress syndrome. Clin Biochem 44:601–604

    Article  CAS  PubMed  Google Scholar 

  34. Shewan LG, Coats AJ (2010) Ethics in the authorship and publishing of scientific articles. Int J Cardiol 144:1–2

    Article  Google Scholar 

  35. Hyogo H, Tazuma S, Arihiro K et al (2008) Efficacy of atorvastatin for the treatment of nonalcoholic steatohepatitis with dyslipidemia. Metabolism 57:1711–1718

    Article  CAS  PubMed  Google Scholar 

  36. Kimura Y, Hyogo H, Yamagishi S et al (2010) Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol 45:750–757

    Article  CAS  PubMed  Google Scholar 

  37. Ueda S, Kato S, Matsuoka H et al (2003) Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase. Circ Res 92:226–233

    Article  CAS  PubMed  Google Scholar 

  38. Ricci C, Longo R, Gioulis E et al (1997) Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol 27:108–113

    Article  CAS  PubMed  Google Scholar 

  39. Kleiner DE, Brunt EM, Van Natta M et al (2005) Nonalcoholic steatohepatitis clinical research network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  40. Kasumov T, Edmison JM, Dasarathy S et al (2011) Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease. Metabolism 60:776–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dogru T, Genc H, Tapan S et al (2012) Elevated asymmetric dimethylarginine in plasma: an early marker for endothelial dysfunction in non-alcoholic fatty liver disease? Diabetes Res Clin Pract 96:47–52

    Article  CAS  PubMed  Google Scholar 

  42. Karakurt F, Carlioglu A, Koktener A et al (2009) Relationship between cerebral arterial pulsatility and carotid intima media thickness in diabetic and non-diabetic patients with non-alcoholic fatty liver disease. J Endocrinol Invest 32:63–68

    CAS  PubMed  Google Scholar 

  43. Colak Y, Senates E, Yesil A, et al (2012) Assessment of endothelial function in patients with nonalcoholic fatty liver disease. Endocrine doi:10.1017/sl2020-012-9712-1

  44. Chen Y, Hozawa S, Sawamura S et al (2005) Deficiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet. Biochem Biophys Res Commun 326:45–51

    Article  CAS  PubMed  Google Scholar 

  45. Gaens KH, Niessen PM, Rensen SS et al (2012) Endogenous formation of Nε-(carboxymethyl)lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis. J Hepatol 56:647–655

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura T, Sato E, Fujiwara N et al (2009) Positive association of serum levels of advanced glycation end products and high mobility group box-1 with asymmetric dimethylarginine in nondiabetic chronic kidney disease patients. Metabolism 58:1624–1628

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura T, Sato E, Fujiwara N et al (2009) Circulating levels of advanced glycation end products (AGE) and interleukin-6 (IL-6) are independent determinants of serum asymmetric dimethylarginine (ADMA) levels in patients with septic shock. Pharmacol Res 60:515–518

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants of Collaboration with Venture Companies Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan (S.Y.). There is no conflict of interest in this paper.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho-ichi Yamagishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyogo, H., Yamagishi, Si., Maeda, S. et al. Serum asymmetric dimethylarginine levels are independently associated with procollagen III N-terminal peptide in nonalcoholic fatty liver disease patients. Clin Exp Med 14, 45–51 (2014). https://doi.org/10.1007/s10238-012-0223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-012-0223-4

Keywords

Navigation