Skip to main content

Advertisement

Log in

Effects of erythropoietin on osteoblast proliferation and function

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The purposes of this study were to investigate the effects of erythropoietin (EPO) on the proliferation and function of human osteoblast cells (hFOB 1.19) cultured in vitro and to explore the underlying molecular mechanisms to provide a theoretical foundation for clinical applications of EPO in oral implant and restoration therapies. Cultured hFOB 1.19 cells were treated with high and low doses of EPO. Changes in cell viability after 24 and 48 h of treatment were evaluated with the Mosmann tetrazolium assay. Changes in cell proliferation after 48 h of EPO treatment were measured by bromodeoxyuridine (BrdU) labeling, and changes in alkaline phosphatase (ALP) activity were determined by a specific assay. The effects of EPO on osteocalcin secretion were determined with the enzyme-linked immunosorbent assay, and changes in the protein expression of osteoprotegerin (OPG), osteopontin (OPN) and receptor activator of NF-κB ligand (RANKL) were assayed by western blot. The effects of EPO treatment on the levels of the EPO receptor (EPOR), phosphorylated Jak2 (P-Jak2) and phosphorylated Stat3 (P-Stat3) in hFOB 1.19 cells were evaluated in conjunction with a Jak2/Stat3 inhibitor. After 24 h of EPO treatment, hFOB 1.19 cells showed increased cell viability compared with the blank control group (p < 0.05). After 48 h, cell viability and growth were further improved relative to controls, with a significant increase observed for viability (p < 0.05). A significant increase in the proportion of BrdU-labeled proliferating cells was observed in the high-dose EPO group (p < 0.05), and EPO-treated cells also showed enhanced ALP activity (p < 0.05). There were no statistically significant differences in osteocalcin secretion between groups after 48 h of EPO treatment (p > 0.05); however, increased secretion was observed in EPO-treated cells after 96 h of treatment (p < 0.05). EPO treatment significantly promoted OPG and OPN expression (p < 0.05) while significantly inhibiting RANKL expression (p < 0.01). EPO treatment also significantly upregulated the levels of EPOR, P-Jak2 and P-Stat3 in hFOB 1.19 cells (p < 0.01); these effects were abrogated by co-treatment with a Jak2/Stat3 inhibitor (AG490) (p < 0.01). EPO significantly stimulated osteoblast proliferation and differentiation. The underlying molecular mechanism is associated with the ability of EPO to promote ALP activity, osteocalcin secretion and OPG and OPN expression and to inhibit RANKL expression in osteoblasts. This mechanism appears to be mediated by the Jak2/Stat3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seong WJ, Kim HC, Jeong S, Deveau DL, Aparicio C, Li Y, Hodges JS (2011) Ex vivo mechanical properties of dental implant bone cement used to rescue initially unstable dental implants: a rabbit study. Int J Oral Maxillofac Implants 26:826–836

    PubMed  Google Scholar 

  2. Al-Omiri MK, Hammad OA, Lynch E, Lamey PJ, Clifford TJ (2011) Impacts of implant treatment on daily living. Int J Oral Maxillofac Implants 26:877–886

    PubMed  Google Scholar 

  3. Carpentier B, Layrolle P, Legallais C (2011) Bioreactors for bone tissue engineering. Int J Artif Organs 34:259–270

    Article  CAS  PubMed  Google Scholar 

  4. Bajek A, Olkowska J, Drewa T (2011) Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration. Postepy Hig Med Dosw (Online) 65:124–132

    Article  Google Scholar 

  5. Li MAmizuka N (2006) Histopathological observations on osteolytic bone metastasis. Clin Calcium 16:591–597

    Google Scholar 

  6. Gundberg CM (2000) Biochemical markers of bone formation. Clin Lab Med 20:489–501

    CAS  PubMed  Google Scholar 

  7. El Haj AJ, Cartmell SH (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng H 224:1523–1532

    Article  CAS  PubMed  Google Scholar 

  8. Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591

    Article  CAS  PubMed  Google Scholar 

  9. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rathod DB, Salahudeen AK (2011) Nonerythropoietic properties of erythropoietin: implication for tissue protection. J Investig Med 59:1083–1085

    CAS  PubMed  Google Scholar 

  11. Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M (2011) Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 82:1291–1303

    Article  CAS  PubMed  Google Scholar 

  12. Sorg H, Harder Y, Krueger C, Reimers K, Vogt PM (2012) The nonhematopoietic effects of erythropoietin in skin regeneration and repair: from basic research to clinical use. Med Res Rev. doi:10.1002/med.21259

    PubMed  Google Scholar 

  13. McGee SJ, Havens AM, Shiozawa Y, Jung Y, Taichman RS (2012) Effects of erythropoietin on the bone microenvironment. Growth Factors 30:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Moore E, Bellomo R (2011) Erythropoietin (EPO) in acute kidney injury. Ann Intensive Care 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  15. Holstein JH, Orth M, Scheuer C, Tami A, Becker SC, Garcia P, Histing T, Morsdorf P, Klein M, Pohlemann T, Menger MD (2011) Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone 49:1037–1045

    Article  CAS  PubMed  Google Scholar 

  16. Kim J, Jung Y, Sun H, Joseph J, Mishra A, Shiozawa Y, Wang J, Krebsbach PH, Taichman RS (2012) Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem 113:220–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shiozawa Y, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang Z, Song J, Lee CH, Sud S, Pienta KJ, Krebsbach PH, Taichman RS (2010) Erythropoietin couples hematopoiesis with bone formation. PLoS ONE 5:e10853

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chiba T, Yamada M, Aiso S (2009) Targeting the JAK2/STAT3 axis in Alzheimer’s disease. Expert Opin Ther Targets 13:1155–1167

    Article  CAS  PubMed  Google Scholar 

  19. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107:1–12

    Article  Google Scholar 

  20. Boykin C, Zhang G, Chen YH, Zhang RW, Fan XE, Yang WM, Lu Q (2012) Cucurbitacin IIa: a novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. Br J Cancer 106:1248

    Article  Google Scholar 

  21. Annunziata M, Oliva A, Basile MA, Giordano M, Mazzola N, Rizzo A, Lanza A, Guida L (2011) The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent 39:720–728

    Article  CAS  PubMed  Google Scholar 

  22. Anchieta RB, Rocha EP, Watanabe MU, de Almeida EO, Freitas-Junior AC, Martini AP, Barioni SR (2011) Recovering the function and esthetics of fractured teeth using several restorative cosmetic approaches. Three clinical cases. Dent Traumatol 28:166–172

    Article  PubMed  Google Scholar 

  23. Orsini G, Stacchi C, Visintini E, Di Iorio D, Putignano A, Breschi L, Di Lenarda R (2011) Clinical and histologic evaluation of fresh frozen human bone grafts for horizontal reconstruction of maxillary alveolar ridges. Int J Periodontics Restorative Dent 31:535–544

    PubMed  Google Scholar 

  24. Stein SH, Tipton DA (2011) Vitamin D and its impact on oral health–an update. J Tenn Dent Assoc 91:30–33; quiz 34–35

    Google Scholar 

  25. Horvai AE, Boyce BF (2011) Metabolic bone diseases. Semin Diagn Pathol 28:13–25

    Article  PubMed  Google Scholar 

  26. Iwamoto J, Sato Y, Takeda T, Matsumoto H (2011) Bone quality and vitamin K2 in type 2 diabetes: review of preclinical and clinical studies. Nutr Rev 69:162–167

    Article  PubMed  Google Scholar 

  27. Reichel C (2011) Recent developments in doping testing for erythropoietin. Anal Bioanal Chem 401:463–481

    Article  CAS  PubMed  Google Scholar 

  28. Holstein JH, Menger MD, Scheuer C, Meier C, Culemann U, Wirbel RJ, Garcia P, Pohlemann T (2007) Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. Life Sci 80:893–900

    Article  CAS  PubMed  Google Scholar 

  29. Pivodova V, Frankova J, Ulrichova J (2011) Osteoblast and gingival fibroblast markers in dental implant studies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:109–116

    Article  CAS  PubMed  Google Scholar 

  30. Orimo H (2011) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nihon Med Sch 77:4–12

    Article  Google Scholar 

  31. Villafan-Bernal JR, Sanchez-Enriquez S, Munoz-Valle JF (2011) Molecular modulation of osteocalcin and its relevance in diabetes (Review). Int J Mol Med 28:283–293

    CAS  PubMed  Google Scholar 

  32. Marolt D, Cozin M, Vunjak-Novakovic G, Cremers S, Landesberg R (2011) Effects of pamidronate on human alveolar osteoblasts in vitro. J Oral Maxillofac Surg 70:1081–1092

    Article  Google Scholar 

  33. Reyes-Garcia R, Rozas-Moreno P, Munoz-Torres M (2011) Cardiovascular disease and bone metabolism. Endocrinol Nutr 58:353–359

    Article  CAS  PubMed  Google Scholar 

  34. Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213

    Article  CAS  PubMed  Google Scholar 

  35. Saidenberg Kermanac’h N, Bessis N, Cohen-Solal M, De Vernejoul MC, Boissier MC (2002) Osteoprotegerin and inflammation. Eur Cytokine Netw 13:144–153

    PubMed  Google Scholar 

  36. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jelkmann W (2007) Control of erythropoietin gene expression and its use in medicine. Methods Enzymol 435:179–197

    Article  CAS  PubMed  Google Scholar 

  38. Aapro M, Jelkmann W, Constantinescu SN, Leyland-Jones B (2012) Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer. Br J Cancer 106:1249–1258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Administration of Traditional Chinese Medicine of Guangdong Province (20111264) and Research Foundation of Science & Technology Bureau of Liwan District of Guangzhou city (20111213053). The authors are grateful to Dr Aaron L for editing the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Luo, T., Fang, Y. et al. Effects of erythropoietin on osteoblast proliferation and function. Clin Exp Med 14, 69–76 (2014). https://doi.org/10.1007/s10238-012-0220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-012-0220-7

Keywords

Navigation