Skip to main content
Log in

Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Invariant natural killer T (iNKT) cells are CD1d-restricted T cells with regulatory functions. iNKT cells are numerically and functionally deficient in experimental models of type 1 diabetes mellitus (T1DM). Moreover, various experimental strategies correcting the defect of or stimulating iNKT cells prevent T1DM. Here, we review the data on the role of iNKT cells in the development of T1DM and discuss indications, obstacles and prospects of the use of iNKT cell manipulations in the prevention and treatment of human T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358(9277):221–229

    Article  PubMed  CAS  Google Scholar 

  2. Zimmet PZ, Tuomi T, Mackay IR et al (1994) Latent autoimmune diabetes mellitus in adults (LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 11(3):299–303

    Article  PubMed  CAS  Google Scholar 

  3. Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32(4):468–478

    Article  PubMed  CAS  Google Scholar 

  4. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32(4):457–467

    Article  PubMed  CAS  Google Scholar 

  5. Skowera A, Ellis RJ, Varela-Calvino R et al (2008) CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 118(10):3390–3402

    PubMed  CAS  Google Scholar 

  6. Payton MA, Hawkes CJ, Christie MR (1995) Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest 96(3):1506–1511

    Article  PubMed  CAS  Google Scholar 

  7. Panina-Bordignon P, Lang R, van Endert PM et al (1995) Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 181(5):1923–1927

    Article  PubMed  CAS  Google Scholar 

  8. Di Lorenzo TP, Peakman M, Roep BO (2007) Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 148(1):1–16

    Article  PubMed  Google Scholar 

  9. Haskins K, Cooke A (2011) CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Curr Opin Immunol 23(6):739–745

    Article  PubMed  CAS  Google Scholar 

  10. Wenzlau JM, Liu Y, Yu L et al (2008) A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 57(10):2693–2697

    Article  PubMed  CAS  Google Scholar 

  11. Roep BO, Peakman M (2011) Diabetogenic T lymphocytes in human Type 1 diabetes. Curr Opin Immunol 23(6):746–753

    Article  PubMed  CAS  Google Scholar 

  12. Silveira PA, Johnson E, Chapman HD, Bui T, Tisch RM, Serreze DV (2002) The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur J Immunol 32(12):3657–3666

    Article  PubMed  CAS  Google Scholar 

  13. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118

    Article  PubMed  Google Scholar 

  14. Battaglia M, Roncarolo MG (2011) Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. Semin Immunol 23(3):182–194

    Article  PubMed  CAS  Google Scholar 

  15. Bluestone JA, Tang Q, Sedwick CE (2008) T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol 28(6):677–684

    Article  PubMed  CAS  Google Scholar 

  16. Fletcher MT, Baxter AG (2009) Clinical application of NKT cell biology in type I (autoimmune) diabetes mellitus. Immunol Cell Biol 87(4):315–323

    Article  PubMed  CAS  Google Scholar 

  17. Novak J, Griseri T, Beaudoin L, Lehuen A (2007) Regulation of type 1 diabetes by NKT cells. Int Rev Immunol 26(1–2):49–72

    Article  PubMed  CAS  Google Scholar 

  18. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237

    Article  PubMed  CAS  Google Scholar 

  19. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT Cells. Annu Rev Immunol 25:297–336

    Article  PubMed  CAS  Google Scholar 

  20. Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    Article  PubMed  CAS  Google Scholar 

  21. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191(11):1895–1903

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda JL, Naidenko OV, Gapin L et al (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192(5):741–754

    Article  PubMed  CAS  Google Scholar 

  23. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20(3):358–368

    Article  PubMed  CAS  Google Scholar 

  24. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11(3):197–206

    Article  PubMed  CAS  Google Scholar 

  25. Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195(5):637–641

    Article  PubMed  CAS  Google Scholar 

  26. Crowe NY, Coquet JM, Berzins SP et al (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202(9):1279–1288

    Article  PubMed  CAS  Google Scholar 

  27. Terashima A, Watarai H, Inoue S et al (2008) A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205(12):2727–2733

    Article  PubMed  CAS  Google Scholar 

  28. Michel ML, Keller AC, Paget C et al (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204(5):995–1001

    Article  PubMed  CAS  Google Scholar 

  29. Laloux V, Beaudoin L, Ronet C, Lehuen A (2002) Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol 168(7):3251–3258

    PubMed  CAS  Google Scholar 

  30. Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lympho proliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73

    Article  PubMed  CAS  Google Scholar 

  31. Bach JF, Francois BJ (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3(3):189–198

    Article  PubMed  Google Scholar 

  32. Hammond KJ, Kronenberg M (2003) Natural killer T cells: natural or unnatural regulators of autoimmunity? Curr Opin Immunol 15(6):683–689

    Article  PubMed  CAS  Google Scholar 

  33. Naumov YN, Bahjat KS, Gausling R et al (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98(24):13838–13843

    Article  PubMed  CAS  Google Scholar 

  34. Shi FD, Flodstrom M, Balasa B et al (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 98(12):6777–6782

    Article  PubMed  CAS  Google Scholar 

  35. Wang B, Geng YB, Wang CR (2001) CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194(3):313–320

    Article  PubMed  Google Scholar 

  36. Yang JQ, Singh AK, Wilson MT et al (2003) Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 171(4):2142–2153

    PubMed  CAS  Google Scholar 

  37. Yang JQ, Chun T, Liu H et al (2004) CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur J Immunol 34(6):1723–1732

    Article  PubMed  CAS  Google Scholar 

  38. Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI (1997) Association between alphabetaTCR+ CD4− CD8− T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46(4):572–582

    Article  PubMed  CAS  Google Scholar 

  39. Lehuen A, Lantz O, Beaudoin L et al (1998) Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 188(10):1831–1839

    Article  PubMed  CAS  Google Scholar 

  40. Mars LT, Laloux V, Goude K et al (2002) Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 168(12):6007–6011

    PubMed  CAS  Google Scholar 

  41. Novak J, Lehuen A (2011) Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 53(3):263–270

    Article  PubMed  CAS  Google Scholar 

  42. Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF (1996) Early quantitative and functional deficiency of NK1+ -like thymocytes in the NOD mouse. Eur J Immunol 26(12):2989–2998

    Article  PubMed  CAS  Google Scholar 

  43. Wilson SB, Kent SC, Patton KT et al (1998) Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 391(6663):177–181

    Article  PubMed  CAS  Google Scholar 

  44. Kukreja A, Cost G, Marker J et al (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109(1):131–140

    PubMed  CAS  Google Scholar 

  45. Berzins SP, Smyth MJ, Baxter AG (2011) Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 11(2):131–142

    Article  PubMed  CAS  Google Scholar 

  46. Kis J, Engelmann P, Farkas K et al (2007) Reduced CD4+ subset and Th1 bias of the human iNKT cells in Type 1 diabetes mellitus. J Leukoc Biol 81(3):654–662

    Article  PubMed  CAS  Google Scholar 

  47. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110(6):793–800

    PubMed  CAS  Google Scholar 

  48. Michalek J, Vrabelova Z, Hrotekova Z et al (2006) Immune regulatory T cells in siblings of children suffering from type 1 diabetes mellitus. Scand J Immunol 64(5):531–535

    Article  PubMed  CAS  Google Scholar 

  49. Montoya CJ, Pollard D, Martinson J et al (2007) Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122(1):1–14

    Article  PubMed  CAS  Google Scholar 

  50. Oikawa Y, Shimada A, Yamada S et al (2002) High frequency of valpha24(+) vbeta11(+) T-cells observed in type 1 diabetes. Diabetes Care 25(10):1818–1823

    Article  PubMed  Google Scholar 

  51. Roman-Gonzalez A, Moreno ME, Alfaro JM et al (2009) Frequency and function of circulating invariant NKT cells in autoimmune diabetes mellitus and thyroid diseases in Colombian patients. Hum Immunol 70(4):262–268

    Article  PubMed  CAS  Google Scholar 

  52. Tsutsumi Y, Jie X, Ihara K et al (2006) Phenotypic and genetic analyses of T-cell-mediated immunoregulation in patients with Type 1 diabetes. Diabet Med 23(10):1145–1150

    Article  PubMed  CAS  Google Scholar 

  53. Berzins SP, Kyparissoudis K, Pellicci DG et al (2004) Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol Cell Biol 82(3):247–252

    Article  PubMed  Google Scholar 

  54. Kent SC, Chen Y, Clemmings SM et al (2005) Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J Immunol 175(7):4458–4464

    PubMed  CAS  Google Scholar 

  55. Forestier C, Takaki T, Molano A et al (2007) Improved outcomes in NOD mice treated with a novel Th2 cytokine-biasing NKT cell activator. J Immunol 178(3):1415–1425

    PubMed  CAS  Google Scholar 

  56. Hong S, Wilson MT, Serizawa I et al (2001) The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7(9):1052–1056

    Article  PubMed  CAS  Google Scholar 

  57. Mizuno M, Masumura M, Tomi C et al (2004) Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J Autoimmun 23(4):293–300

    Article  PubMed  CAS  Google Scholar 

  58. Sharif S, Arreaza GA, Zucker P et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7(9):1057–1062

    Article  PubMed  CAS  Google Scholar 

  59. Falcone M, Facciotti F, Ghidoli N et al (2004) Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 172(10):5908–5916

    PubMed  CAS  Google Scholar 

  60. Duarte N, Stenstrom M, Campino S et al (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173(5):3112–3118

    PubMed  CAS  Google Scholar 

  61. Novak J, Lehuen A (2011) Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 53(3):263–270

    Article  PubMed  CAS  Google Scholar 

  62. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10(7):501–513

    Article  PubMed  CAS  Google Scholar 

  63. Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG (1998) alpha/beta-T cell receptor (TCR)+ CD4− CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187(7):1047–1056

    Article  PubMed  CAS  Google Scholar 

  64. Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A (2001) NK T cell-induced protection against diabetes in V alpha 14-J alpha 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 166(6):3749–3756

    PubMed  CAS  Google Scholar 

  65. Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17(6):725–736

    Article  PubMed  CAS  Google Scholar 

  66. Novak J, Beaudoin L, Griseri T, Lehuen A (2005) Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J Immunol 174(4):1954–1961

    PubMed  CAS  Google Scholar 

  67. Mi QS, Ly D, Zucker P, McGarry M, Delovitch TL (2004) Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes 53(5):1303–1310

    Article  PubMed  CAS  Google Scholar 

  68. Chen YG, Choisy-Rossi CM, Holl TM et al (2005) Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 174(3):1196–1204

    PubMed  CAS  Google Scholar 

  69. Diana J, Brezar V, Beaudoin L et al (2011) Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 208(4):729–745

    Article  PubMed  CAS  Google Scholar 

  70. Ly D, Mi QS, Hussain S, Delovitch TL (2006) Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+ CD25+ regulatory T cells. J Immunol 177(6):3695–3704

    PubMed  CAS  Google Scholar 

  71. Jahng AW, Maricic I, Pedersen B et al (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194(12):1789–1799

    Article  PubMed  CAS  Google Scholar 

  72. Singh AK, Wilson MT, Hong S et al (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194(12):1801–1811

    Article  PubMed  CAS  Google Scholar 

  73. Yang JQ, Saxena V, Xu H, Van Kaer L, Wang CR, Singh RR (2003) Repeated alpha-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171(8):4439–4446

    PubMed  CAS  Google Scholar 

  74. Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112(8):1211–1222

    PubMed  CAS  Google Scholar 

  75. Simoni Y, Gautron AS, Beaudoin L et al (2011) NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 41(12):3574–3585

    Article  PubMed  CAS  Google Scholar 

  76. Griseri T, Beaudoin L, Novak J et al (2005) Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175(4):2091–2101

    PubMed  CAS  Google Scholar 

  77. Van Kaer L (2005) alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5(1):31–42

    Article  PubMed  Google Scholar 

  78. Fletcher MT, Baxter AG (2009) Clinical application of NKT cell biology in type I (autoimmune) diabetes mellitus. Immunol Cell Biol 87(4):315–323

    Article  PubMed  CAS  Google Scholar 

  79. Ludvigsson J (2009) C-peptide an adequate endpoint in type 1 diabetes. Diabetes Metab Res Rev 25(8):691–693

    Article  PubMed  CAS  Google Scholar 

  80. Rogers PR, Matsumoto A, Naidenko O, Kronenberg M, Mikayama T, Kato S (2004) Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN7000. J Immunol Methods 285(2):197–214

    Article  PubMed  CAS  Google Scholar 

  81. van der Vliet HJ, Nishi N, Koezuka Y et al (2001) Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 247(1–2):61–72

    Article  PubMed  Google Scholar 

  82. Mars LT, Novak J, Liblau RS, Lehuen A (2004) Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks. Trends Immunol 25(9):471–476

    Article  PubMed  CAS  Google Scholar 

  83. Exley MA, Nakayama T (2011) NKT-cell-based immunotherapies in clinical trials. Clin Immunol 140(2):117–118

    Article  PubMed  CAS  Google Scholar 

  84. Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8(12):3702–3709

    PubMed  CAS  Google Scholar 

  85. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22(2):68–78

    Article  PubMed  CAS  Google Scholar 

  86. Feutren G, Papoz L, Assan R et al (1986) Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet 2(8499):119–124

    Article  PubMed  CAS  Google Scholar 

  87. Michels AW, Eisenbarth GS (2011) Immune intervention in type 1 diabetes. Semin Immunol 23(3):214–219

    Article  PubMed  CAS  Google Scholar 

  88. Pal E, Tabira T, Kawano T, Taniguchi M, Miyake S, Yamamura T (2001) Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells. J Immunol 166(1):662–668

    PubMed  CAS  Google Scholar 

  89. Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202–1208

    Article  PubMed  CAS  Google Scholar 

  90. Herold KC, Hagopian W, Auger JA et al (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346(22):1692–1698

    Article  PubMed  CAS  Google Scholar 

  91. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG (2006) Rapamycin promotes expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177(12):8338–8347

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Agnes Lehuen from INSERM U986, Paris, France, for critical reading of the manuscript. We are grateful to James Andronicus from 3rd Faculty of Medicine, Charles University in Prague for English corrections. JN is currently supported by research project UNCE204010.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, J., Novakova, L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med 13, 229–237 (2013). https://doi.org/10.1007/s10238-012-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-012-0199-0

Keywords

Navigation