Skip to main content

Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats

Abstract

Catechin has anti-inflammatory and antioxidative effects. Cardiotoxicity, which results from intense cardiac oxidative stress and inflammation, is the main limiting factor of the adriamycin use in the treatment of malignant tumors. Thus, the present study aimed to assess the antioxidant and anti-inflammatory effects of catechin on adriamycin-induced cardiotoxicity in rats. Forty-five rats were allocated to three groups: control group, adriamycin group and adriamycin + catechin group. We performed the following measurements: lipid peroxidation (MDA), catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities as well as, the expression of inflammatory cytokines genes namely nuclear factor kappa-B, tumor necrosis factor and inducible nitric oxide synthase. Catechin administration significantly decreased MDA level and significantly increased CAT, GSH-Px and SOD activities. Also, catechin significantly decreased the expression levels of inflammatory cytokines. Catechin provided cardioprotection on adriamycin-induced cardiotoxicity through their antioxidant and anti-inflammatory properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bast A, Kaiserová H, Hartog G, Haenen G, Vijgh W (2007) Protectors against adriamycininduced cardiotoxicity: flavonoids. Cell Biol Toxicol 23(1):39–47

    PubMed  Article  CAS  Google Scholar 

  2. Sari FR, Arozal W, Watanabe K, Harima M, Veeravedu PT, Thandavarayan RA, Suzuki K, Arumugam S, Soetikno V, Kodama M (2011) Carvedilol attenuates inflammatory-mediated cardiotoxicity in daunorubicin-induced rats. Pharmaceuticals 4:551–566

    Article  CAS  Google Scholar 

  3. Weinstein DM, Mihm MJ, Bauer JA (2002) Cardiac peroxynitrite formation and left ventricular dysfunction following adriamycin treatment in mice. J Pharmacol Exp Ther 94:396–401

    Google Scholar 

  4. Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM (1990) Structure of the adriamycin-cardiolipin complex role in mitochondrial toxicity. Biophys Chem 35:247–257

    PubMed  Article  CAS  Google Scholar 

  5. Lebrecht DMS, Setzer B, Ketelsen UP, Haberstroh J, Walker UA (2003) Time-dependant and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic adriamycin cardiomyopathy. Circulation 108:2423–2429

    PubMed  Article  CAS  Google Scholar 

  6. Abou El Hassan MA, Verheul HM, Jorna AS, Schalkwijk C, van Bezu J, van der Vijgh WJ, Bast A (2003) The new cardio-protector Monohydroxyethylrutoside protects against adriamycin-induced inflammatory effects in vitro. Br J Cancer 89:357–362

    PubMed  Article  CAS  Google Scholar 

  7. Hou G, Dick R, Abrams GD, Brewer GJ (2005) Tetrathiomolybdate protects against cardiac damage by adriamycin in mice. J Lab Clin Med 146:299–303

    PubMed  Article  CAS  Google Scholar 

  8. Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, Kroemer HK, Schultheiss HP, Tschöpe C (2009) Pretreatment with statin attenuates the cardiotoxicity of adriamycin in mice. Cancer Res 69:695–699

    PubMed  Article  CAS  Google Scholar 

  9. Stoclet JC, Muller B, György K, Andriantsiothaina R, Kleschyov AL (1999) The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 375:139–155

    PubMed  Article  CAS  Google Scholar 

  10. Turpaev KT (1998) Nitric oxide in intercellular communication. Mol Biol 32:475–484

    CAS  Google Scholar 

  11. Suzuki JI, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M (2007) Tea catechin improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail 9:152–159

    PubMed  Article  CAS  Google Scholar 

  12. Lin YL, Lin JK (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52:465–472

    PubMed  CAS  Google Scholar 

  13. Benelli R, Vene R, Bisacchi D, Garbisa S, Albini A (2002) Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases. Biol Chem 383:101–105

    PubMed  Article  CAS  Google Scholar 

  14. Kalender S, Kalender Y, Ates A, Yel M, Olcay E, Candan S (2002) Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats. Braz J Med Biol Res 35:1379–1387

    PubMed  Article  CAS  Google Scholar 

  15. Rabelo E, De Angelis K, Bock P, Tânia Fernandes G, Cervo F, Klein AB, Clausell N, Irigoyen MC (2001) Baroreflex sensitivity and oxidative stress in adriamycin-induced heart failure. Hypertension 38:576–580

    PubMed  Article  CAS  Google Scholar 

  16. Kalender Y, Yel M, Kalender S (2005) Adriamycin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology 209:39–45

    PubMed  Article  CAS  Google Scholar 

  17. Okhawa H, Oohishi N, Yagi K (1979) Assay for Lipid peroxides in animal tissues by thiobarbituric acid reaction. Ann Biochem 95:351–358

    Article  Google Scholar 

  18. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    PubMed  Article  CAS  Google Scholar 

  19. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Chemic Academic Press Inc., Verlag, New York, pp 673–685

    Google Scholar 

  20. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  21. Liu B, Li H, Qu H, Sun B (2006) Nitric oxide synthase expressions in ADR-induced cardiomyopathy in rats. J Biochem Mol Biol 39(6):759–765

    PubMed  Article  CAS  Google Scholar 

  22. Lou H, Danelisen I, Singal PK (2004) Cytokines are not upregulated in adriamycin-induced cardiomyopathy and heart failure. JMCC 36:683–690

    CAS  Google Scholar 

  23. Gabr MM, Hussein AM, Sherif IO, Ali SI, Mohamed HE (2011) Renal ischemia/reperfusion injury in type II DM: possible role of proinflammatory cytokines, apoptosis, and nitric oxide. J Physiol Pathophysiol 2(1):6–17

    CAS  Google Scholar 

  24. Lefrak EA, Pitha J, Rosenheim S, GFottiebm JA (1973) A clinicopathological analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    PubMed  Article  CAS  Google Scholar 

  25. O’Brien PJ, Dameron GW, Beck ML, Kang YJ, Erickson BK, Di Battista TH (1997) Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim Sci 47:486–495

    PubMed  Google Scholar 

  26. Umlauf J, Horký M (2002) Molecular biology of adriamycin-induced cardiomyopathy. Exp Clin Cardiol 7(1):35–39

    PubMed  CAS  Google Scholar 

  27. Patil L, Balaraman R (2011) Effect of green tea extract on adriamycin induced cardiovascular abnormalities: antioxidant action. Iran J Pharm Res 10(1):89–96

    Google Scholar 

  28. Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D, Attias J, Hayek T, Fuhrman B (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res 28:49–62

    PubMed  CAS  Google Scholar 

  29. Takabayashi F, Harada N (1997) Effects of green tea catechin (Polyphenon 100) on cerulein-induced acute pancreatitis in rats. Pancreas 14:276–279

    PubMed  Article  CAS  Google Scholar 

  30. Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523–524:201–208

    PubMed  Google Scholar 

  31. Locher R, Emmanuele L, Suter PM, Vetter W, Barton M (2002) Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein. Eur J Pharmacol 434:1–7

    PubMed  Article  CAS  Google Scholar 

  32. Li T, Singal PK (2000) Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 102:2105–2110

    PubMed  Article  CAS  Google Scholar 

  33. Heger J, Godecke A, Flogel U (2002) Cardiac-specific overexpression of inducible nitric oxide synthase dose not results in severe cardiac dysfunction. Circulation Res 90:93–99

    PubMed  Article  CAS  Google Scholar 

  34. Wang S, Kotamraju S, Konorev E, Kalivendi S, Joseph J, Kalyanaraman B (2002) Activation of nuclear factor-κB during adriamycin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 367:729–740

    PubMed  Article  CAS  Google Scholar 

  35. Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-α expression. BMC Pharmacol 3:16

    PubMed  Article  Google Scholar 

  36. Takimoto Y, Aoyama T, Tanaka K, Keyamura R, Yui Y (2002) Augmented expression of neuronal nitric oxide synthase in the atria parasympathetically decreases heart rate during acute myocardial infarction in rats. Circulation 105:490–496

    PubMed  Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa H. Mohamed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abd El-Aziz, T.A., Mohamed, R.H., Pasha, H.F. et al. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12, 233–240 (2012). https://doi.org/10.1007/s10238-011-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-011-0165-2

Keywords

  • Adriamycin
  • Catechin
  • Oxidative stress
  • Inflammation