Bast A, Kaiserová H, Hartog G, Haenen G, Vijgh W (2007) Protectors against adriamycininduced cardiotoxicity: flavonoids. Cell Biol Toxicol 23(1):39–47
PubMed
Article
CAS
Google Scholar
Sari FR, Arozal W, Watanabe K, Harima M, Veeravedu PT, Thandavarayan RA, Suzuki K, Arumugam S, Soetikno V, Kodama M (2011) Carvedilol attenuates inflammatory-mediated cardiotoxicity in daunorubicin-induced rats. Pharmaceuticals 4:551–566
Article
CAS
Google Scholar
Weinstein DM, Mihm MJ, Bauer JA (2002) Cardiac peroxynitrite formation and left ventricular dysfunction following adriamycin treatment in mice. J Pharmacol Exp Ther 94:396–401
Google Scholar
Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM (1990) Structure of the adriamycin-cardiolipin complex role in mitochondrial toxicity. Biophys Chem 35:247–257
PubMed
Article
CAS
Google Scholar
Lebrecht DMS, Setzer B, Ketelsen UP, Haberstroh J, Walker UA (2003) Time-dependant and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic adriamycin cardiomyopathy. Circulation 108:2423–2429
PubMed
Article
CAS
Google Scholar
Abou El Hassan MA, Verheul HM, Jorna AS, Schalkwijk C, van Bezu J, van der Vijgh WJ, Bast A (2003) The new cardio-protector Monohydroxyethylrutoside protects against adriamycin-induced inflammatory effects in vitro. Br J Cancer 89:357–362
PubMed
Article
CAS
Google Scholar
Hou G, Dick R, Abrams GD, Brewer GJ (2005) Tetrathiomolybdate protects against cardiac damage by adriamycin in mice. J Lab Clin Med 146:299–303
PubMed
Article
CAS
Google Scholar
Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, Kroemer HK, Schultheiss HP, Tschöpe C (2009) Pretreatment with statin attenuates the cardiotoxicity of adriamycin in mice. Cancer Res 69:695–699
PubMed
Article
CAS
Google Scholar
Stoclet JC, Muller B, György K, Andriantsiothaina R, Kleschyov AL (1999) The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 375:139–155
PubMed
Article
CAS
Google Scholar
Turpaev KT (1998) Nitric oxide in intercellular communication. Mol Biol 32:475–484
CAS
Google Scholar
Suzuki JI, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M (2007) Tea catechin improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail 9:152–159
PubMed
Article
CAS
Google Scholar
Lin YL, Lin JK (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52:465–472
PubMed
CAS
Google Scholar
Benelli R, Vene R, Bisacchi D, Garbisa S, Albini A (2002) Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases. Biol Chem 383:101–105
PubMed
Article
CAS
Google Scholar
Kalender S, Kalender Y, Ates A, Yel M, Olcay E, Candan S (2002) Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats. Braz J Med Biol Res 35:1379–1387
PubMed
Article
CAS
Google Scholar
Rabelo E, De Angelis K, Bock P, Tânia Fernandes G, Cervo F, Klein AB, Clausell N, Irigoyen MC (2001) Baroreflex sensitivity and oxidative stress in adriamycin-induced heart failure. Hypertension 38:576–580
PubMed
Article
CAS
Google Scholar
Kalender Y, Yel M, Kalender S (2005) Adriamycin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology 209:39–45
PubMed
Article
CAS
Google Scholar
Okhawa H, Oohishi N, Yagi K (1979) Assay for Lipid peroxides in animal tissues by thiobarbituric acid reaction. Ann Biochem 95:351–358
Article
Google Scholar
Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333
PubMed
Article
CAS
Google Scholar
Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Chemic Academic Press Inc., Verlag, New York, pp 673–685
Google Scholar
Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132
CAS
Google Scholar
Liu B, Li H, Qu H, Sun B (2006) Nitric oxide synthase expressions in ADR-induced cardiomyopathy in rats. J Biochem Mol Biol 39(6):759–765
PubMed
Article
CAS
Google Scholar
Lou H, Danelisen I, Singal PK (2004) Cytokines are not upregulated in adriamycin-induced cardiomyopathy and heart failure. JMCC 36:683–690
CAS
Google Scholar
Gabr MM, Hussein AM, Sherif IO, Ali SI, Mohamed HE (2011) Renal ischemia/reperfusion injury in type II DM: possible role of proinflammatory cytokines, apoptosis, and nitric oxide. J Physiol Pathophysiol 2(1):6–17
CAS
Google Scholar
Lefrak EA, Pitha J, Rosenheim S, GFottiebm JA (1973) A clinicopathological analysis of adriamycin cardiotoxicity. Cancer 32:302–314
PubMed
Article
CAS
Google Scholar
O’Brien PJ, Dameron GW, Beck ML, Kang YJ, Erickson BK, Di Battista TH (1997) Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim Sci 47:486–495
PubMed
Google Scholar
Umlauf J, Horký M (2002) Molecular biology of adriamycin-induced cardiomyopathy. Exp Clin Cardiol 7(1):35–39
PubMed
CAS
Google Scholar
Patil L, Balaraman R (2011) Effect of green tea extract on adriamycin induced cardiovascular abnormalities: antioxidant action. Iran J Pharm Res 10(1):89–96
Google Scholar
Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D, Attias J, Hayek T, Fuhrman B (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res 28:49–62
PubMed
CAS
Google Scholar
Takabayashi F, Harada N (1997) Effects of green tea catechin (Polyphenon 100) on cerulein-induced acute pancreatitis in rats. Pancreas 14:276–279
PubMed
Article
CAS
Google Scholar
Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523–524:201–208
PubMed
Google Scholar
Locher R, Emmanuele L, Suter PM, Vetter W, Barton M (2002) Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein. Eur J Pharmacol 434:1–7
PubMed
Article
CAS
Google Scholar
Li T, Singal PK (2000) Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 102:2105–2110
PubMed
Article
CAS
Google Scholar
Heger J, Godecke A, Flogel U (2002) Cardiac-specific overexpression of inducible nitric oxide synthase dose not results in severe cardiac dysfunction. Circulation Res 90:93–99
PubMed
Article
CAS
Google Scholar
Wang S, Kotamraju S, Konorev E, Kalivendi S, Joseph J, Kalyanaraman B (2002) Activation of nuclear factor-κB during adriamycin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 367:729–740
PubMed
Article
CAS
Google Scholar
Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-α expression. BMC Pharmacol 3:16
PubMed
Article
Google Scholar
Takimoto Y, Aoyama T, Tanaka K, Keyamura R, Yui Y (2002) Augmented expression of neuronal nitric oxide synthase in the atria parasympathetically decreases heart rate during acute myocardial infarction in rats. Circulation 105:490–496
PubMed
Article
CAS
Google Scholar