Skip to main content

Advertisement

Log in

Gene delivery of soluble vascular endothelial growth factor receptor-1 (sFlt-1) inhibits intra-plaque angiogenesis and suppresses development of atherosclerotic plaque

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Intra-plaque angiogenesis plays an important role in the development of atherosclerotic plaque. Vascular endothelial growth factor (VEGF) is a major initiating factor in this pathologic progress. One selective and specific inhibitor of VEGF is soluble VEGF receptor-1 (sFlt-1). The anti-angiogenic utilization of sFlt-1 in treatment of atherosclerotic plaque has not been fully confirmed yet. Our study was designed to construct eukaryotic expression recombinant pEGFP-N1-sFlt-1, evaluate sFlt-1 recombinant’s effects on endothelial cells proliferation and tube formation in vitro, and investigate effects of local high-expressed sFlt-1 on atherosclerotic plaque in vivo. Rabbit models of atherosclerotic plaque were established by high-lipid diet combined with injury induced by balloon catheter on iliac artery intima. Animals were divided into four groups randomly: control group (C), atherosclerotic plaque group (AP), atherosclerotic plaque with blank vector pEGFP-N1 transfection group (APV), and atherosclerotic plaque with pEGFP-N1-sFlt-1 transfection group (APsFlt-1). The local expression of sFlt-1 protein in target artery was detected by western blotting. The plaque area (PA), plaque circumference (PC), and maximum plaque thickness (MPT) were measured via HE staining. Degree of intra-plaque angiogenesis was evaluated by CD34+ cells immunohistochemistry. As results, we observed that pEGFP-N1-sFlt-1 transfection suppressed the HUVECs proliferation and ability of tube formation, against the effect of VEGF. We obtained higher local expression of sFlt-1 protein in Group APsFlt-1 than that in other groups (P < 0.05). PA, PC, and MPT of plaque in group APsFlt-1 were significantly decreased when compared with other groups (P < 0.05). Amount of annulations surrounded by CD34-positive cells was significantly decreased in pEGFP-N1-sFlt-1 transfection group, which represented decreased level of intra-plaque neovessels formation. The present study confirmed that local gene delivery of sFlt-1 can suppress plaque formation, as one of possible mechanisms, via inhibitive effect on intra atherosclerotic plaque angiogenesis, which hints at the clinical utility of sFlt-1 in atherosclerosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  PubMed  CAS  Google Scholar 

  2. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29

    Article  PubMed  Google Scholar 

  3. Burchardt P, Nowak W, Gozdzicka-Jozefiak A, Link R, Grotowski T, Wisniecka A, Siminiak T (2009) Presence of irregularity in region between −1115 and −784 nt in P1 promoter of insulin-like growth factor-1 gene may indicate beneficial effect on coronary arteries in a group of patients with stable angina: preliminary data. Heart Vessels 24:254–259

    Article  PubMed  Google Scholar 

  4. Petrovan RJ, Kaplan CD, Reisfeld RA, Curtiss LK (2007) DNA vaccination against VEGF receptor 2 reduces atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 27:1095–1100

    Article  PubMed  CAS  Google Scholar 

  5. Holm PW, Slart RH, Zeebregts CJ, Hillebrands JL, Tio RA (2009) Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 41:257–264

    Article  PubMed  CAS  Google Scholar 

  6. Eubank TD, Roberts R, Galloway M, Wang Y, Cohn DE, Marsh CB (2004) GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity 21:831–842

    Article  PubMed  CAS  Google Scholar 

  7. Ramachandra S, D’Souza SS, Gururaj AE, Shaila MS, Salimath BP (2009) Paracrine action of sFlt-1 secreted by stably-transfected Ehrlich ascites tumor cells and therapy using sFlt-1 inhibits ascites tumor growth in vivo. J Gene Med 11:422–434

    Article  PubMed  CAS  Google Scholar 

  8. Arat S, Gibbons J, Rzucidlo SJ, Respess DS, Tumlin M, Stice SL (2002) In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biol Reprod 66:1768–1774

    Article  PubMed  CAS  Google Scholar 

  9. Daly C, Pasnikowski E, Burova E, Wong V, Aldrich TH, Griffiths J, Ioffe E, Daly TJ, Fandl JP, Papadopoulos N, McDonald DM, Thurston G, Yancopoulos GD, Rudge JS (2006) Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103:15491–15496

    Article  PubMed  CAS  Google Scholar 

  10. Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, Slutsky AS, Peterson MD, Backx PH, Penninger JM, Verma S (2008) Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 295:H1377–H1384

    Article  PubMed  CAS  Google Scholar 

  11. Celletti FL, Hilfiker PR, Ghafouri P, Dake MD (2001) Effect of human recombinant vascular endothelial growth factor165 on progression of atherosclerotic plaque. J Am Coll Cardiol 37:2126–2130

    Article  PubMed  CAS  Google Scholar 

  12. Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, Biedermann BC (2004) Arterial angiogenesis and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 110:2843–2850

    Article  PubMed  Google Scholar 

  13. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP (2007) Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 45:155–159

    Article  PubMed  Google Scholar 

  14. Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL, Borén J (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  PubMed  Google Scholar 

  15. Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VW, Virmani R, Daemen MJ (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53:1517–1527

    Article  PubMed  CAS  Google Scholar 

  16. Doyle B, Caplice N (2007) Plaque angiogenesis and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 49:2073–2080

    Article  PubMed  Google Scholar 

  17. Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4:3–8

    Article  PubMed  CAS  Google Scholar 

  18. Gössl M, Beighley PE, Malyar NM, Ritman EL (2004) Role of vasa vasorum in transendothelial solute transport in the coronary vessel wall: a study with cryostatic micro-CT. Am J Physiol Heart Circ Physiol 287:H2346–H2351

    Article  PubMed  Google Scholar 

  19. De Haro J, Acin F, Lopez-Quintana A, Florez A, Martinez-Aguilar E, Varela C (2009) Meta-analysis of randomized, controlled clinical trials in angiogenesis: gene and cell therapy in peripheral arterial disease. Heart Vessels 24:321–328

    Article  PubMed  Google Scholar 

  20. Chaturvedi S, Yadav JS (2006) The role of antiplatelet therapy in carotid stenting for ischemic stroke prevention. Stroke 37:1572–1577

    Article  PubMed  CAS  Google Scholar 

  21. Higo T, Ueda Y, Oyabu J, Okada K, Nishio M, Hirata A, Kashiwase K, Ogasawara N, Hirotani S, Kodama K (2009) Atherosclerotic and thrombogenic neointima formed over sirolimus drug-eluting stent: an angioscopic study. JACC Cardiovasc Imaging 2:616–624

    Article  PubMed  Google Scholar 

  22. Zhao Q, Egashira K, Inoue S, Usui M, Kitamoto S, Ni W, Ishibashi M, Hiasa Ki K, Ichiki T, Shibuya M, Takeshita A (2002) Vascular endothelial growth factor is necessary in the development of arteriosclerosis by recruiting/activating monocytes in a rat model of long-term inhibition of nitric oxide synthesis. Circulation 105:1110–1115

    Article  PubMed  CAS  Google Scholar 

  23. Belgore F, Blann A, Neil D, Ahmed AS, Lip GY (2004) Localisation of members of the vascular endothelial growth factor (VEGF) family and their receptors in human atherosclerotic arteries. J Clin Pathol 57:266–272

    Article  PubMed  CAS  Google Scholar 

  24. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116

    PubMed  CAS  Google Scholar 

  25. Moulton KS (2002) Plaque angiogenesis: its functions and regulation. Cold Spring Harb Symp Quant Biol 67:471–482

    Article  PubMed  CAS  Google Scholar 

  26. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443:993–997

    Article  PubMed  CAS  Google Scholar 

  27. Ponticelli S, Marasco D, Tarallo V, Albuquerque RJ, Mitola S, Takeda A, Stassen JM, Presta M, Ambati J, Ruvo M, De Falco S (2008) Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1. J Biol Chem 283:34250–34259

    Article  PubMed  CAS  Google Scholar 

  28. Malecki M, Trembacz H, Szaniawska B, Przybyszewska M, Janik P (2005) Vascular endothelial growth factor and soluble FLT-1 receptor interactions and biological implications. Oncol Rep 14:1565–1569

    PubMed  CAS  Google Scholar 

  29. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109:227–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support awarded by National Key Technology R&D Program (No.2008BA168B00) and support from Health Department of Jiangxi Province Government, P.R. China. We thank for the advices in manuscript writing given by Dr. Shuhong Li from Toronto General Hospital (Ontario, Canada).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhou, Y., He, L. et al. Gene delivery of soluble vascular endothelial growth factor receptor-1 (sFlt-1) inhibits intra-plaque angiogenesis and suppresses development of atherosclerotic plaque. Clin Exp Med 11, 113–121 (2011). https://doi.org/10.1007/s10238-010-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-010-0112-7

Keywords

Navigation