Skip to main content
Log in

Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell’s surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding—meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1–4 kBT, which translates to a ~ 3–50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All code and simulation data presented in this work is available upon reasonable request.

References

Download references

Acknowledgements

This work was supported by the United States National Cancer Institute F99/K00 fellowship, grant number F99CA245789 / K00CA245789.

Author information

Authors and Affiliations

Authors

Contributions

A.T.B. Performed all work

Corresponding author

Correspondence to Aaron T. Blanchard.

Ethics declarations

Competing interests

This author has no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchard, A.T. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. Biomech Model Mechanobiol 23, 117–128 (2024). https://doi.org/10.1007/s10237-023-01762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-023-01762-x

Keywords

Navigation