Skip to main content

Development of a coupled modeling for tumor growth, angiogenesis, oxygen delivery, and phenotypic heterogeneity

Abstract

Analysis of the evolution and growth dynamics of tumors is crucial for understanding cancer and the development of individually optimized therapies. During tumor growth, a hypoxic microenvironment around cancer cells caused by excessive non-vascular tumor growth induces tumor angiogenesis that plays a key role in the ensuing tumor growth and its progression into higher stages. Various mathematical simulation models have been introduced to simulate these biologically and physically complex hallmarks of cancer. Here, we developed a hybrid two-dimensional computational model that integrates spatiotemporally different components of the tumor system to investigate both angiogenesis and tumor growth/proliferation. This spatiotemporal evolution is based on partial diffusion equations, the cellular automation method, transition and probabilistic rules, and biological assumptions. The new vascular network provided by angiogenesis affects tumor microenvironmental conditions and drives individual cells to adapt themselves to spatiotemporal conditions. Furthermore, some stochastic rules are involved besides microenvironmental conditions. Overall, the conditions promote some commonly observed cellular states, i.e., proliferative, migrative, quiescent, and cell death, depending on the condition of each cell. Altogether, our results offer a theoretical basis for the biological evidence that regions of the tumor tissue near blood vessels are densely populated by proliferative phenotypic variants, while poorly oxygenated regions are sparsely populated by hypoxic phenotypic variants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data

Not applicable.

References

  • Addison-Smith B, McElwain DLS, Maini PK (2008) A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol 250(1):1–5

    MathSciNet  MATH  Google Scholar 

  • Alarcón T, Owen MR, Byrne HM, Maini PK (2006) Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput Math Methods Med 7(2–3):35–119

    MathSciNet  MATH  Google Scholar 

  • Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

    MathSciNet  MATH  Google Scholar 

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Mathemat Med Biol 22(2):163–168

    MATH  Google Scholar 

  • Anderson ARA (2007) A hybrid multiscale model of solid tumour growth and invasion: evolution and the microenvironment. In: single-cell-based models in biology and medicine. Birkhäuser Basel pp 3–28

  • Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857

    MATH  Google Scholar 

  • Baete SH, Vandecasteele J, de Deene Y (2011) 19F MRI oximetry: simulation of perfluorocarbon distribution impact. Phys Med Biol 56(8):2535

    Google Scholar 

  • Becker M, Levy D (2017) Modeling the transfer of drug resistance in solid tumors. Bull Math Biol 79(10):2394–2412

    MathSciNet  MATH  Google Scholar 

  • Borkenstein K, Levegrün S, Peschke P (2004) Modeling and computer simulations of tumor growth and tumor response to radiotherapy. Radiat Res 162(1):71–83

    Google Scholar 

  • Brooks PC, Strömblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85(5):683–693

    Google Scholar 

  • Bull JA, Mech F, Quaiser T, Waters SL, Byrne HM (2020) Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS Comput Biol 16(8):e1007961

    Google Scholar 

  • Cai Y, Xu S, Wu J, Long Q (2011) Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J Theor Biol 279(1):90–101

    MATH  Google Scholar 

  • Cai Y, Zhang J, Li Z (2016) Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy. Biomed Eng Online 15(2):685

    Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Google Scholar 

  • Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Diseases. 2(1):26–34

    Google Scholar 

  • Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. JNCI J Nat Cancer Inst 89(17):1260–1270

    Google Scholar 

  • Chaplain MAJ, McDougall SR, Anderson ARA (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8(1):233–257

    Google Scholar 

  • Chen D, Jiao Y, Torquato S (2014) A cellular automaton model for tumor dormancy: emergence of a proliferative switch. PLoS ONE 9(10):e109934

    Google Scholar 

  • Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO2 distributions in the bone marrow hematopoietic compartment. I Krogh’s Model Biophys J 81(2):675–684

    Google Scholar 

  • Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Săftoiu A (2015) VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 53(3):199–208

    Google Scholar 

  • Daşu A, Toma-Daşu I, Karlsson M (2003) Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 48(17):2789

    Google Scholar 

  • Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro : monolayers and spheroids. Phys Biol 2(3):133–147

    Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, VandenBerg S, Johnson RS, Werb Z, Bergers G (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220

    Google Scholar 

  • Edalgo YTN, Versypt ANF (2018) Mathematical modeling of metastatic cancer migration through a remodeling extracellular matrix. Processes 6(5):58

  • Espinoza I, Peschke P, Karger CP (2013) A model to simulate the oxygen distribution in hypoxic tumors for different vascular architectures. Med Phys 40(8):08713

    Google Scholar 

  • Fassnacht D, Pörtner R (1999) Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J Biotechnol 72(3):169–184

    Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Nat Cancer Inst 82(1):4–7

    Google Scholar 

  • Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic proten-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 130(2):393

    Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84

    Google Scholar 

  • Gallaher JA, Brown JS, Anderson ARA (2019) The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci Rep 9(1):1

    Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):576

    Google Scholar 

  • Gevertz JL, Gillies GT, Torquato S (2008) Simulating tumor growth in confined heterogeneous environments. Phys Biol 5(3):036010

    Google Scholar 

  • Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14(2):10059

    Google Scholar 

  • Gillies RJ, Brown JS, Anderson AR, Gatenby RA (2018) Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 18(9):576–585

    Google Scholar 

  • Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66(21):10233–10237

    Google Scholar 

  • Grimes DR, Kelly C, Bloch K, Partridge M (2014) A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface 11(92):201311

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Google Scholar 

  • Hendrata M, Sudiono J (2019) A hybrid multiscale model for investigating tumor angiogenesis and its response to cell-based therapy. In Silico Biol 13(1–2):1–20

    Google Scholar 

  • Jacobson K, Ishihara A, Inman R (1987) Lateral diffusion of proteins in membranes. Annu Rev Physiol 49(1):163–175

    Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Google Scholar 

  • Jiao Y, Torquato S (2013) Evolution and morphology of microenvironment-enhanced malignancy of three-dimensional invasive solid tumors. Phys Rev E 87(5):052707

    Google Scholar 

  • Kansal AR, Torquato S, Harsh GR, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367–382

    Google Scholar 

  • Kazmi N, Hossain MA, Phillips RM (2012) A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport. IEEE/ACM Trans Comput Biol Bioinform 9(6):1595–1606

    Google Scholar 

  • Kelly CJ, Brady M (2006) A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data. Phys Med Biol 51(22):5859

    Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Google Scholar 

  • Koh MY, Spivak-Kroizman TR, Powis G (2010) HIF-1α and cancer therapy. Angiogenesis Inhibition. 180:15–34

    Google Scholar 

  • Kohandel M, Kardar M, Milosevic M, Sivaloganathan S (2007) Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies. Phys Med Biol 52(13):3665

    Google Scholar 

  • Kohandel M, Haselwandter CA, Kardar M, Sengupta S, Sivaloganathan S (2011) Quantitative model for efficient temporal targeting of tumor cells and neovasculature. Comput Math Methods Med 2011:1–10

    MathSciNet  MATH  Google Scholar 

  • Kumar S, Kapoor A, Desai S, Inamdar MM, Sen S (2016) Proteolytic and non-proteolytic regulation of collective cell invasion: Tuning by ECM density and organization. Sci Rep 6(1):19905

    Google Scholar 

  • Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular Molecul Life Sci 77:1745–1770

    Google Scholar 

  • Lv X, Li J, Zhang C, Hu T, Li S, He S, Yan H, Tan Y, Lei M, Wen M, Zuo J (2017) The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Diseases. 4(1):19–24

    Google Scholar 

  • Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan Y, Pienta KJ, Anderson KS (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17(10):605–619

    Google Scholar 

  • Lippold G Mitchell, A R./Griffiths, D F (1980) The finite difference method in partial differential equations. Chichester-New York-Brisbane-Toronto, John Wiley & Sons 1980 XII, 272 S., £8.95. ISBN 0–471–27641–3. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. 1980;60(12):741–741.

  • Mönnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D (2011) Modelling and simulation of [18F]fluoromisonidazole dynamics based on histology-derived microvessel maps. Phys Med Biol 56(7):2045

    Google Scholar 

  • Mukherjee R, Ray SS, Mondal S, Chatterjee A (2022) Salivary active MMP-2 of breast cancer patients is inhibited by guava leaves PBS extract. Am J Plant Sci 13(5):650–658

    Google Scholar 

  • Nguyen Edalgo YT, Zornes AL, Ford Versypt AN (2019) A hybrid discrete–continuous model of metastatic cancer cell migration through a remodeling extracellular matrix. AIChE J 65(9):16671

    Google Scholar 

  • Pillay S, Byrne HM, Maini PK (2017) Modeling angiogenesis: a discrete to continuum description. Phys Rev E 95(1):012410

    MathSciNet  Google Scholar 

  • Pourhasanzade F, Sabzpoushan SH (2021) A new mathematical model for controlling tumor growth based on microenvironment acidity and oxygen concentration. Biomed Res Int 25(2021):1–18

    Google Scholar 

  • Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson ARA (2015) Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res 75(8):1567

    Google Scholar 

  • Schmitz JE, Kansal AR, Torquato S (2002) A cellular automaton model of brain tumor treatment and resistance. J Theor Med 4(4):229

    MATH  Google Scholar 

  • Secomb TW, Hsu R, Park EYH, Dewhirst MW (2004) Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann Biomed Eng 32(11):1519

    Google Scholar 

  • Secomb TW, Dewhirst MW, Pries AR (2012) Structural adaptation of normal and tumour vascular networks. Basic Clinic Pharmacol Toxicol 110(1):63–69

    Google Scholar 

  • Shirinifard A, Gens JS, Zaitlen BL, Popławski NJ, Swat M, Glazier JA (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10):e7190

    Google Scholar 

  • Simbawa E (2017) Mechanistic model for cancer growth and response to chemotherapy. Comput Math Methods Med 2017:1–7

    MATH  Google Scholar 

  • Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA (1990) Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest 63(5):657

    Google Scholar 

  • Tang PS (1933) On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension. Q Rev Biol 8(3):260–274

    Google Scholar 

  • Tang L, van de Ven AL, Guo D, Andasari V, Cristini V, Li KC et al (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS ONE 9(1):e8392

    Google Scholar 

  • Tannock IF (1972) Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br J Radiol 45(535):515

    Google Scholar 

  • Terranova VP, DiFlorio R, Lyall RM, Hic S, Friesel R, Maciag T (1985) Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol 101(6):2330

    Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539

    Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449

    Google Scholar 

  • Vegliante R, Pastushenko I, Blanpain C (2022) Deciphering functional tumor states at single-cell resolution. EMBO J 41(2):109221

    Google Scholar 

  • Villa C, Chaplain MA, Lorenzi T (2021) Modeling the emergence of phenotypic heterogeneity in vascularized tumors. SIAM J Appl Mathemat 81(2):434–453

    MathSciNet  MATH  Google Scholar 

  • Welter M, Rieger H (2016) Computer simulations of the tumor vasculature: applications to interstitial fluid flow, drug delivery, and oxygen supply. In: advances in experimental medicine and biology 31: 72.

  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11(1):5120

    Google Scholar 

  • Xie H, Jiao Y, Fan Q, Hai M, Yang J, Hu Z et al (2018) Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. PLoS ONE 13(10):e0206292

    Google Scholar 

  • Yanagisawa H, Sugimoto M, Miyashita T (2021) Mathematical simulation of tumour angiogenesis: angiopoietin balance is a key factor in vessel growth and regression. Sci Rep 11(1):419

    Google Scholar 

  • Yangjin K, Stolarska MA, Othmer HG (2007) A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Mathemat Models Methods Appl Sci 17(SUPPL 1):1773

    MathSciNet  MATH  Google Scholar 

  • Züleyha A, Ziya M, Selçuk Y, Kemal ÖM, Mesut T (2017) Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the creutz cellular automaton. Physica a: Stat Mech Appl 486:901

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank all individuals who cooperated in this study.

Funding

This research is supported in part by Shahrekord University.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and M.M. and M.E.B. and H.R. conceived of the presented idea. M.B. developed the theory and performed the computations. M.M. and M.E.B. and H.R. verified the analytical methods. M.M. and M.E.B. supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Modjtaba Emadi-Baygi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzouei, M., Mardaani, M., Emadi-Baygi, M. et al. Development of a coupled modeling for tumor growth, angiogenesis, oxygen delivery, and phenotypic heterogeneity. Biomech Model Mechanobiol 22, 1067–1081 (2023). https://doi.org/10.1007/s10237-023-01701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-023-01701-w

Keywords