Skip to main content
Log in

A computational study of aortic reconstruction in single ventricle patients

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Patients with hypoplastic left heart syndrome (HLHS) are born with an underdeveloped left heart. They typically receive a sequence of surgeries that result in a single ventricle physiology called the Fontan circulation. While these patients usually survive into early adulthood, they are at risk for medical complications, partially due to their lower than normal cardiac output, which leads to insufficient cerebral and gut perfusion. While clinical imaging data can provide detailed insight into cardiovascular function within the imaged region, it is difficult to use these data for assessing deficiencies in the rest of the body and for deriving blood pressure dynamics. Data from patients used in this paper include three-dimensional, magnetic resonance angiograms (MRA), time-resolved phase contrast cardiac magnetic resonance images (4D-MRI) and sphygmomanometer blood pressure measurements. The 4D-MRI images provide detailed insight into velocity and flow in vessels within the imaged region, but they cannot predict flow in the rest of the body, nor do they provide values of blood pressure. To remedy these limitations, this study combines the MRA, 4D-MRI, and pressure data with 1D fluid dynamics models to predict hemodynamics in the major systemic arteries, including the cerebral and gut vasculature. A specific focus is placed on studying the impact of aortic reconstruction occurring during the first surgery that results in abnormal vessel morphology. To study these effects, we compare simulations for an HLHS patient with simulations for a matched control patient that has double outlet right ventricle (DORV) physiology with a native aorta. Our results show that the HLHS patient has hypertensive pressures in the brain as well as reduced flow to the gut. Wave intensity analysis suggests that the HLHS patient has irregular circulatory function during light upright exercise conditions and that predicted wall shear stresses are lower than normal, suggesting the HLHS patient may have hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Image intensities are taken in the range 100–264 Houndsfield Units.

References

  • Ahmed Y, Tossas-Betancourt C, van Bakel PAJ, Primeaux JM, Weadock WJ, Lu JC, Zampi JD, Salavitabar A, Figueroa CA (2021) Interventional planning for endovascular revision of a lateral tunnel Fontan: a patient-specific computational analysis. Front Physiol 12:718254

    Article  Google Scholar 

  • Al-Qamari A, Adeleke I, Kretzer A, Hogue CW (2020) Pulse Pressure and Perioperative Stroke. Curr Opin Anaesthesiol 32(1):57–63

    Article  Google Scholar 

  • Antiga L, Piccinelli M, Botti L, EneIordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112

    Article  Google Scholar 

  • Bartolo MA, Qureshi MU, Colebank MJ, Chesler NC, Olufsen MS (2022) Numerical predictions of shear stress and cyclic stretch in pulmonary hypertension due to left heart failure. Biomech Model Mechanobiol 21:363–381

    Article  Google Scholar 

  • Baumler K, Vedula V, Sailer AM, Seo J, Chiu P, Mistelbauer G, Chan FP, Fischbein MP, Marsden AL, Fleishmann D (2020) Fluid-structure interaction simulations of patient-specific aorta dissection. Biomech Model Mechanobiol 19(5), 1607–1628

    Article  Google Scholar 

  • Bazilevs Y, Hsu MC, Bension DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    Article  MathSciNet  MATH  Google Scholar 

  • Bellsham-Revell HR, Tibby SM, Bell AJ, Witter T, Simpson J, Beerbaum P, Anderson D, Austin CB, Greil GF, Razavi R. (2013) Serial magnetic resonance imaging in hypoplastic left heart syndrome gives valuable insight into ventricular and vascular adaptation. J Am Coll Cardiol 61:561–570

    Article  Google Scholar 

  • Biglino G, Schievano S, Steeden JA, Ntsinjana H, Baker C, Khambadkone S, de Leval MR, Hsia T-Y, Taylor AM, Giardina A (2012) Reduced ascending aorta distensibility relates to adverse ventricular mechanics in patients with hypoplastic left heart syndrome: noninvasive study using wave intensity analysis. J Thorac Cardiovascu Surg 144:1307–1314

    Article  Google Scholar 

  • Blanco PJ, Muller LO, Spence JD (2017) Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2(3), 108–117

    Article  Google Scholar 

  • Bove EL, de Leval MR, Migliavacca F, Balossino R, Dubini G. (2007) Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr Cardiol 28:477–481

    Article  Google Scholar 

  • Broyd CJ, Davies JE, Escaned JE, Hughes A, Parker K (2015) Wave intensity analysis and its application to the coronary circulation. Glob Cardio Sci 215(5):64

    Google Scholar 

  • Callaghan FM, Grieve SM (2018) Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am J Physiol - Heart Circ Physiol 315(5):1174–1181

    Article  Google Scholar 

  • Camposilvan S, Milanesi O, Stellin G, Pettenazzo A, Zancan L, D’Antiga L (2008) Liver and cardiac function in the long term after Fontan operation. Ann Thorac Surg 86(1):177–182

    Article  Google Scholar 

  • Cardis BM, Fyfe DA, Mahle WT (2006) Elastic Properties of the Reconstructed Aorta in Hypoplastic Left Heart Syndrome. Ann Thorac Surg 81(3):988–991

    Article  Google Scholar 

  • Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The Mechanics of the Circulation. Oxford University Press

    MATH  Google Scholar 

  • Chambers MJ, Colebank MJ, Qureshi MU, Clipp R, Olufsen MS (2020) Structural and hemodynamic properties of murin pulmonary arterial networks under hypoxia-induced pulmonary hypertension. Proc Inst Mech Eng H 234(11):1312–1329

    Article  Google Scholar 

  • Colebank MJ, Paun M, Quershi MU, Chesler N, Husmeier D, Olufsen MS, Fix LE (2019) Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries. J. R. Soc. Interface 16:20190284

    Article  Google Scholar 

  • Colebank MJ, Qureshi MU, Olufsen MS (2019) Sensitivity analysis and uncertainty quantification of 1-D models of pulmonary hemodynamics in mice under control and hypertensive conditions. Int J Numer Method Biomed Eng 37:e3424

    Google Scholar 

  • Colebank MJ, Qureshi MU, Rajagopal M, Krasuski RA, Olufsen MS (2021) A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. Am J Physiol-Heart Circ Physiol 321:H318–H338

    Article  Google Scholar 

  • Deal BJ, Jacobs ML (2012) Management of the failing Fontan circulation. Heart 98: 1098–1104

    Article  Google Scholar 

  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Peiper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 20(9):1323–1341

    Article  Google Scholar 

  • Fontan F, Baudet E (1971) Surgical repair of tricuspid artesia. Thorax 26:240–248

    Article  Google Scholar 

  • Gewillig M, Brown SC (2016) The Fontan circulation after 45 years: update in physiology. Heart 102:1081–1086

    Article  Google Scholar 

  • Gobergs R, Salputra E, Lubaua I (2016) Hypoplastic left heart syndrome: a review. Acta Med Litu 23(2):86–89

    Google Scholar 

  • Gordon-Walker TT, Bove K, Veldtman G (2019) Fontan-associate liver disease: A review. J Cardiol 74(3):223–232

    Article  Google Scholar 

  • Griffith BE, Patankar NA (2020) Immersed Methods for Fluid-Structure Interaction. Annu Rev Fluid Mech 52:421–428

    Article  MathSciNet  MATH  Google Scholar 

  • Harkel ADJT, Takken T, van Osch-Gevers M, Helbing WA (2011) Normal values for cardiopulmonary exercise testing in children Eur J. Prev Cardiol 18(1):48–54

    Article  Google Scholar 

  • Kikinis R, Pieper SD, Vosburgh K (2014) 3D slicer: a platform for a subject-specific image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging image-guided therapy. Springer, New York, pp 277–289

    Chapter  Google Scholar 

  • Kotani Y, Chetan D, Zhu J, Saedi A, Zhao L, Mertens L, Redington AN, Coles J, Caldarone CA, Arsdell GSV, Honjo O. (2018) Fontan failure and death in contemporary Fontan circulation: analysis from the last two decades. Ann Thorac Surg 105:1240–1247

    Article  Google Scholar 

  • Kung E, Pennati G, Migliavacca F, Hsia T, Figliola R, Marsden A, Giardini A (2014) A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped parameter model. J Biomech Eng 136(8):081007

    Article  Google Scholar 

  • Loke YH, Kim B, Mass P, Opfermann JD, Hibino N, Krieger A et al (2020) Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study. J Thorac Cardiovasc Surg 160(1):203-212.e2

    Article  Google Scholar 

  • Mahle WT, Rychik J, Weinberg PM, Cohen MS (1998) Growth characteristics of the aortic arch after the Norwood operation. J Am Coll Cardiol 32(7):1951–1954

    Article  Google Scholar 

  • Mainwaring RD, Lamberti JJ, Moore JW, Billman GF, Nelson JC (1994) Comparison of the Hormonal Response After Bidrectional Glenn and Fontan Procedures. Ann Thorac Surg 57:59–64

    Article  Google Scholar 

  • Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, Taylor CA, Feinstein JA (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403

    Article  Google Scholar 

  • Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35:250–263

    Article  Google Scholar 

  • Melis A, Moura F, Larrabide I, Janot K, Clayton RH, Narata AP, Marzo A (2019) Improved biomechanical metrics of cerebral vasospasm identified via sensitivity analysis of a 1D cerebral circulation model. J Biomech 90:24–32

    Article  Google Scholar 

  • Mitchell GF (2018) Aortic stiffness, pressure and flow pulsatility, and target organ damage. J Appl Physiol 125(6), 1871–1880

    Article  Google Scholar 

  • Mitchell GF, Parise H, Vita JA, Larson MG, Warner E, Keaney JF Jr, Keyes MJ, Levy D, Vasan RS, Benjamin EJ (2004) Local Shear Stress and Brachial Artery Flow-Mediated Dilation. Hypertension 44:134–139

    Article  Google Scholar 

  • Mynard JP, Valen-Sendstad K (2015) A unified method for estimating energy losses at vascular junctions. Int J Numer Meth Biomed Eng 31:e02717

    Article  Google Scholar 

  • Navaratnam D, Fitzsimmons S, Grocott M, Rossiter HB, Emmanuel Y, Diller G, Gordon-Walker T, Jack S, Sheron N, Pappachan J, Pratap JN, Vettukattil JJ, Veldtman G (2016) Exercise-Induced Systemic Venous Hypertension in the Fontan Circulation. Am J Cardio 117:1667–1671

    Article  Google Scholar 

  • Ohye RG, Sleeper LA, Mahony L, Newburger JW (2010) Comparison of shunt types in the norwood procedure for single-ventricle lesions. N Engl J Med 362:1980–1992

    Article  Google Scholar 

  • Olufsen MS (2001) A one-dimensional fluid dynamic model of the systemic arteries. In: Fauci, L.J., Gueron, S. (eds) Computational Modeling in Biological Fluid Dynamics The IMA Volumes in Mathematics and its Applications, vol 124. Springer, New York

    Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical Simulation and experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions. Ann Biomed Eng 28:1281–1299

    Article  Google Scholar 

  • Ou P, Celermajer DS, Jolivet O, Buyens F, Herment A, Sidi D, Bonnet D, Mousseaux E (2008) Increased central aortic stiffness and left ventricular mass in normotensive young subjects after successful coarctation repair. Am Heart J 155(1), 187–193

    Article  Google Scholar 

  • Pekkan K, Dasi LP, De Zelicourt D, Sundareswaran KS, Fogel MA, Kanter KR, Yoganathan AP (2009) Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. Hemi-Fontan templates. Ann Biomed Eng 37(1):50–63

    Article  Google Scholar 

  • Pennati G, Fumero R (2000) Scaling approach to study the changes through the gestation of human fetal Cardian and circulatory behaviors. Ann Biomed Eng 28:442–452

    Article  Google Scholar 

  • Pomella N, Wilhelm EN, Kolyva C, Gonzalex-Alonso J, Rakobowchuk M, Khir AW (2018) Noninvasive assessment of the common carotid artery hemodynamics with increasing exercise work rate using wave intensity analysis. Am J Physiol Heart Circ Physiol 315:233–241

    Article  Google Scholar 

  • Prather R, Das A, Farias M, Divo E, Kassab A, DeCampil W (2022) Parametric investigation of an injection-jet self-powered Fontan circulation. Sci Rep 12:2161

    Article  Google Scholar 

  • Puelz C, Acosta S, Rivieere B, Penny DJ, Brady KM, Rusin CG (2017) A computational study of the Fontan circulation with fenestration or hepatic vein exculsion. Comput Biol Med 89:405–418

    Article  Google Scholar 

  • Qureshi MU, Colebank MJ, Paun LM, Fix LE, Chelser N, Haider MA, Hill NA, Husmeier D, Olufsen MS (2019) Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomech Model Mechanobiol 18(1), 219–243

    Article  Google Scholar 

  • Qureshi MU, Colebank MJ, Paun LM, Chesler N, Haider MA, Hill NA, Husmeier D, Olufsen MS (2019) A computational study of pulmonary hemodynamics in healthy and hypoxic mice. arXiv:1712.01699

  • Saiki H, Kurishima C, Masutani S, Senzaki H (2014) Cerebral circulation in patients with Fontan circulation: assessment by carotid arterial wave intensity and stiffness. Ann Thoracic Surg 97(4):1394–1399

    Article  Google Scholar 

  • Saiki H, Sugimoto M, Kuwata S, Kurishima C, Iwamoto Y, Ishido H, Masutani S, Senzaki H (2016) Novel mechanisms for cerebral blood flow regulation in patients with congenital heart disease. Am Heart J 172:152–159

    Article  Google Scholar 

  • Schafer M, Frank BS, Jacobssen R, Rausch CM, Mitchell MB, Jaggers J, Stone ML, Morgan GJ, Browne LP, Barker AJ, Hunter KS, Ivy DD, Younoszai A, Di Maria MV (2021) Patients with Fontan circulation have abnormal aortic wave propagation patterns: A wave intensity analysis study. Int J Cardio 322:158–167

    Article  Google Scholar 

  • Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow imaging with MRI. Cardiovascular Diagn Ther 4(2):173–192

    Google Scholar 

  • Sun Q, Liu J, Qian Y, Zhang H, Wang Q, Sun Y, Hong H, Lie J (2014) Computational haemondynamic analysis of patient-specific virtual operations for total cavopulmonary connection with dual superior venae cavae. European J Cardio-Thorac Surg 45(3):564–469

    Article  Google Scholar 

  • Tanoue Y, Sese A, Ueno Y, Joh K, Hihii T. (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates, Circulation. 103(21), 2176–2180

    Article  Google Scholar 

  • Traub O, Berk BC (1998) Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force. ATVB 18:677–685

    Article  Google Scholar 

  • Tworetzky W, McElhinney DB, Reddy MV, Brook MM, Hanley FL, Silverman NH (2001) Improved Surgical Outcome After Fetal Diagnosis of Hypoplastic Left Heart Syndrome. Circulation 103:1269–1273

    Article  Google Scholar 

  • Utkarsh A (2015) The Paraview guide: a parallel visualization application. Kitware Inc, Clifton Park

    Google Scholar 

  • Voges I, Jerosch-Herold M, Hedderich J, Westphal C, Hart C, Helle M, Scheewe J, Pardun E, Kramer H, Rickers C (2010) Maladaptive Aortic Properties in Children After Palliation of Hypoplastic Left Heart Syndrome Assessed by Cardiovascular Magnetic Resonance Imaging. Circulation 122:1068–1076

    Article  Google Scholar 

  • Voges I, Jerosch-Herold M, Wegner P, Hart C, Gabbert D, Bulushi AA, Fischer G, Andrade AC, Pham HM, Kristo I, Kramer HH, Rickers C (2015) Frequent dilation of the descending aorta in children with hypoplastic left heart syndrome relates to decreased aortic arch elasticity. J Am Heart Assoc 4(10):e002107

    Article  Google Scholar 

  • Yagi Y, Yamamota M, Saito H, More T, Morimoto Y, Oyasu T, Tachibana T, Ito YM (2017) Changes of cerebral oxygenation in sequential Glenn and Fontan procedures in the same children. Pediatric Cardiol 38:1215–1219

    Article  Google Scholar 

  • Yang JW, Cho KI, Kim JH, Kim SY, Kim CS, You GI, Lee JY, Choi SY, Lee SW, Kim HS, Heo JH, Cha TJ, Lee JW (2014) Wall shear stress in hypertensive patients is associated with carotid vascular deformation assessed by speckle tracking strain imaging. Clin Hypertens 20(10), 1–6

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2137100. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. The project described was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant TL1 TR001415 (MJC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Puelz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor-LaPole, A.M., Colebank, M.J., Weigand, J.D. et al. A computational study of aortic reconstruction in single ventricle patients. Biomech Model Mechanobiol 22, 357–377 (2023). https://doi.org/10.1007/s10237-022-01650-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01650-w

Keywords

Navigation