Skip to main content

Advertisement

Log in

Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Tumor microenvironment (TME) is a multi-scale biological environment that can control tumor dynamics with many biomechanical and biochemical factors. Investigating the physiology of TME with a heterogeneous structure and abnormal functions not only can achieve a deeper understanding of tumor behavior but also can help develop more efficient anti-cancer strategies. In this work, we develop a hybrid multi-scale mathematical model of TME to simulate the progression of a three-dimensional tumor and elucidate its response to different chemotherapy approaches. The chemotherapy approaches include multiple low dose (MLD) of anti-cancer drug, maximum tolerated dose (MTD) of anti-cancer drug, combination therapy of MLD and anti-angiogenic drug, and combination therapy of MTD and anti-angiogenic drug. The results show that combining anti-angiogenic agent with anti-cancer drug increases the performance of cancer treatment and decreases side effects for normal tissue. Indeed, the vascular normalization caused by anti-angiogenic therapy improves anti-cancer drug delivery for both MLD and MTD approaches. The results show that anti-cancer drug administered in a lower dose than the maximum tolerated dose repetitively over a long period treats cancer with a considerable performance and fewer side effects. We also show that tumor morphology and distribution of cancer cell phenotypes can be considered as the characteristics to distinguish different chemotherapy approaches. This robust model can be applied to predict the behavior of any type of cancer and quantify cancer response to different chemotherapy approaches. The computational results of cancer response to chemotherapy are in good agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baish JW, Netti PA, Jain RK (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53(2):128–141

    Article  Google Scholar 

  • Baish JW, Stylianopoulos T, Lanning RM, Kamoun WS, Fukumura D, Munn LL, Jain RK (2011) Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci 108(5):1799–1803

    Article  Google Scholar 

  • Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, Liang W, Trivett A, Zhou M, Wang JM (2019) High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Trans Oncol 12(9):1155–1163

    Article  Google Scholar 

  • Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvas Res 37(1):77–104

    Article  Google Scholar 

  • Beljanski V (2007) Bevacizumab. Elsevier, Amsterdam, pp 1–6

    Google Scholar 

  • Berk A, Zipursky S, Lodish H (2000) Molecular cell biology 4th edition, National center for biotechnology informationõs bookshelf.

  • Böckelmann LC, Schumacher U (2019) Targeting tumor interstitial fluid pressure: Will it yield novel successful therapies for solid tumors? Expert Opin Ther Targets 23(12):1005–1014

    Article  Google Scholar 

  • Boucher Y, Leunig M, Jain RK (1996) Tumor angiogenesis and interstitial hypertension. Can Res 56(18):4264–4266

    Google Scholar 

  • Buchwald P (2009) FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor Biol Med Model 6(1):5

    Article  Google Scholar 

  • Cai Y, Wu J, Li Z, Long Q (2016a) Mathematical modelling of a brain tumour initiation and early development: a coupled model of glioblastoma growth, pre-existing vessel co-option, angiogenesis and blood perfusion. PLoS One 11(3):e0150296

    Article  Google Scholar 

  • Cai Y, Zhang J, Li Z (2016b) Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy. Biomed Eng Online 15(2):155

    Article  Google Scholar 

  • Cameron MA, Davis AL (2009) A mathematical model of angiogenesis in Glioblastoma Multiforme.

  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discovery 10(6):417–427

    Article  Google Scholar 

  • Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298

    Article  Google Scholar 

  • Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388

    Article  Google Scholar 

  • Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2020) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. In: Nano-enabled medical applications, Jenny Stanford Publishing, pp 279–311.

  • De Vos F, Willemse P, De Vries E, Gietema J (2004) Endothelial cell effects of cytotoxics: balance between desired and unwanted effects. Cancer Treat Rev 30(6):495–513

    Article  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  Google Scholar 

  • del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J (2010) Identification and functional analysis of endothelial tip cell–enriched genes. Blood J Am Soc Hematol 116(19):4025–4033

    Google Scholar 

  • Dewhirst MW, Secomb TW (2017) Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer 17(12):738–750

    Article  Google Scholar 

  • DiResta GR, Nathan SS, Manoso MW, Casas-Ganem J, Wyatt C, Kubo T, Boland PJ, Athanasian EA, Miodownik J, Gorlick R (2005) Cell proliferation of cultured human cancer cells are affected by the elevated tumor pressures that exist in vivo. Ann Biomed Eng 33(9):1270–1280

    Article  Google Scholar 

  • Dirix LY, Libura M, Libura J, Vermeulen PB, De Bruijn EA, Van Oosterom AT (1997) In vitro toxicity studies with mitomycins and bleomycin on endothelial cells. Anticancer Drugs 8(9):859–868

    Article  Google Scholar 

  • Eichmann A, Simons M (2012) VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24(2):188–193

    Article  Google Scholar 

  • Ferretti S, Allegrini PR, Becquet MM, McSheehy PM (2009) Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 11(9):874–881

    Article  Google Scholar 

  • Fukumura D, Jain RK (2007a) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949

    Article  Google Scholar 

  • Fukumura D, Jain RK (2007b) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84

    Article  Google Scholar 

  • Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Can Res 69(11):4894–4903

    Article  Google Scholar 

  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  Google Scholar 

  • Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA (2011) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol 4(4):401–409

    Article  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    Article  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  Google Scholar 

  • Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205

    Article  Google Scholar 

  • Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276

    Article  Google Scholar 

  • Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Can Res 67(6):2729–2735

    Article  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943

    Article  Google Scholar 

  • Kim JY, Kim Y-M (2019) Tumor endothelial cells as a potential target of metronomic chemotherapy. Arch Pharmacal Res 42(1):1–13

    Article  Google Scholar 

  • Kim M-C, Silberberg YR, Abeyaratne R, Kamm RD, Asada HH (2018) Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration. Proc Natl Acad Sci 115(3):E390–E399

    Article  Google Scholar 

  • Kim HN, Habbit NL, Su CY, Choi N, Ahn EH, Lipke EA, Kim DH (2019) Microphysiological systems as enabling tools for modeling complexity in the tumor microenvironment and accelerating cancer drug development. Adv Func Mater 29(22):1807553

    Article  Google Scholar 

  • Lee E, Song HG, Chen CS (2016) Biomimetic on-a-chip platforms for studying cancer metastasis. Curr Opin Chem Eng 11:20–27

    Article  Google Scholar 

  • Lin YS, Nguyen C, Mendoza J-L, Escandon E, Fei D, Meng YG, Modi NB (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288(1):371–378

    Google Scholar 

  • Liu R, Lai Y, He B, Li Y, Wang G, Chang S, Gu Z (2012) Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery. Int J Nanomed 7:5249

    Google Scholar 

  • Magdoom K, Pishko GL, Hwan Kim J, Sarntinoranont M (2012) Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor. J Biomech Eng. https://doi.org/10.1115/1.4007096

    Article  Google Scholar 

  • Martin JD, Seano G, Jain RK (2019) Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol 81:505–534

    Article  Google Scholar 

  • McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589

    Article  MathSciNet  MATH  Google Scholar 

  • Miao L, Huang L (2015) Exploring the tumor microenvironment with nanoparticles. Nanotechnol-Based Prec Tools Detect Treat Cancer, 166:193-226.

  • Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, Delozier T, Sohn JH, Provencher L, Puglisi F (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247

    Article  Google Scholar 

  • Munn LL, Kunert C, Tyrrell JA (2013) Modeling tumor blood vessel dynamics. In: Mathematical methods and models in biomedicine, Springer, pp 117–147.

  • Nakatsu MN, Sainson RC, Pérez-del-Pulgar S, Aoto JN, Aitkenhead M, Taylor KL, Carpenter PM, Hughes CC (2003) VEGF 121 and VEGF 165 regulate blood vessel diameter through vascular endothelial growth factor receptor 2 in an in vitro angiogenesis model. Lab Invest 83(12):1873–1885

    Article  Google Scholar 

  • Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Can Res 55(22):5451–5458

    Google Scholar 

  • Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK (1996) Effect of transvascular fluid exchange on pressure–flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 52(1):27–46

    Article  Google Scholar 

  • Nikmaneshi M, Firoozabadi B, Saidi M (2015) Two-Phase acto-cytosolic fluid flow in a moving Keratocyte: a 2D continuum model. Bull Math Biol 77(9):1813–1832

    Article  MathSciNet  MATH  Google Scholar 

  • Nikmaneshi M, Firoozabadi B, Saidi M (2018) Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell. J Biomech 67:37–45

    Article  Google Scholar 

  • Nikmaneshi MR, Firoozabadi B, Mozafari A, Munn LL (2020a) A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth. Sci Rep 10(1):1–20

    Article  Google Scholar 

  • Nikmaneshi MR, Firoozabadi B, Munn LL (2020b) Optimizing vessel normalization and chemotherapies to control tumor growth. FASEB J 34(S1):1–1

    Google Scholar 

  • Nikmaneshi MR, Firoozabadi B, Mozafari A (2021) Chemo-mechanistic multi-scale model of a three-dimensional tumor microenvironment to quantify chemotherapy response of cancer. Biotechnol Bioeng 118:3871–3887

    Article  Google Scholar 

  • Nikmaneshi MR, Firoozabadi B, Saidi MS (2013a) Continuum model of actin-myosin flow. 2013 20th Iranian conference on biomedical engineering (ICBME). IEEE pp 98–102.

  • Nikmaneshi MR, Firoozabadi B, Ghasemi A, Saidi MS (2013b) Development of mechanical stress in a moving cell: a continuum model.

  • Norton K-A, Popel AS (2016) Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci Rep 6:36992

    Article  Google Scholar 

  • Ozturk D, Yonucu S, Yilmaz D, Unlu MB (2015) Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors. Phys Med Biol 60(4):1477

    Article  Google Scholar 

  • Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365(26):2484–2496

    Article  Google Scholar 

  • Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci 108(27):11115–11120

    Article  Google Scholar 

  • Portillo-Lara R, Annabi N (2016) Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. Lab Chip 16(21):4063–4081

    Article  Google Scholar 

  • Pries A, Secomb T, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Phys-Heart Circul Phys 275(2):H349–H360

    Google Scholar 

  • Pries A, Reglin B, Secomb T (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Phys-Heart Circul Phys 281(3):H1015–H1025

    Google Scholar 

  • Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non–small-cell lung cancer: AVAiL. J Clin Oncol 27(8):1227–1234

    Article  Google Scholar 

  • Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, Perez EA, Yardley DA, Chan SY, Zhou X (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2–negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29(10):1252–1260

    Article  Google Scholar 

  • Skog S, Tribukait B, Sundius G (1982) Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells. Exp Cell Res 141(1):23–29

    Article  Google Scholar 

  • Song G, Darr DB, Santos CM, Ross M, Valdivia A, Jordan JL, Midkiff BR, Cohen S, Nikolaishvili-Feinberg N, Miller CR (2014) Effects of tumor microenvironment heterogeneity on nanoparticle disposition and efficacy in breast cancer tumor models. Clin Cancer Res 20(23):6083–6095

    Article  Google Scholar 

  • Stéphanou A, McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math Comput Model 44(1–2):96–123

    Article  MathSciNet  MATH  Google Scholar 

  • Stéphanou A, Lesart A-C, Deverchère J, Juhem A, Popov A, Estève F (2017a) How tumour-induced vascular changes alter angiogenesis: insights from a computational model. J Theor Biol 419:211–226

    Article  MATH  Google Scholar 

  • Stylianopoulos T, Munn LL, Jain RK (2018) Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends in Cancer 4(4):292–319

    Article  Google Scholar 

  • Tai X, Cai XB, Zhang Z, Wei R (2016) In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncol Lett 12(5):3701–3706

    Article  Google Scholar 

  • Tang L, Van De Ven AL, Guo D, Andasari V, Cristini V, Li KC, Zhou X (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS One 9(1):e83962

    Article  Google Scholar 

  • Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Can Res 64(11):3731–3736

    Article  Google Scholar 

  • Turley RS, Fontanella AN, Padussis JC, Toshimitsu H, Tokuhisa Y, Cho EH, Hanna G, Beasley GM, Augustine CK, Dewhirst MW (2012) Bevacizumab-induced alterations in vascular permeability and drug delivery: a novel approach to augment regional chemotherapy for in-transit melanoma. Clin Cancer Res 18(12):3328–3339

    Article  Google Scholar 

  • Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T, Hawkes DJ (2017) A validated multiscale in-silico model for mechano-sensitive tumour angiogenesis and growth. PLoS Comput Biol 13(1):e1005259

    Article  Google Scholar 

  • Viallard C, Larrivée B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426

    Article  Google Scholar 

  • Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS One 8(8):e70395

    Article  Google Scholar 

  • Wojcik T, Buczek E, Majzner K, Kolodziejczyk A, Miszczyk J, Kaczara P, Kwiatek W, Baranska M, Szymonski M, Chlopicki S (2015) Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicol in Vitro 29(3):512–521

    Article  Google Scholar 

  • Wong BW, Marsch E, Treps L, Baes M, Carmeliet P (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J 36(15):2187–2203

    Article  Google Scholar 

  • Wood LB, Ge R, Kamm RD, Asada HH (2012) Nascent vessel elongation rate is inversely related to diameter in in vitro angiogenesis. Integr Biol 4(9):1081–1089

    Article  Google Scholar 

  • Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS One 11(2):e0149422

    Article  Google Scholar 

  • Yapp DT, Wong MQ, Kyle AH, Valdez SM, Tso J, Yung A, Kozlowski P, Owen DA, Buczkowski AK, Chung SW (2016) The differential effects of metronomic gemcitabine and antiangiogenic treatment in patient-derived xenografts of pancreatic cancer: treatment effects on metabolism, vascular function, cell proliferation, and tumor growth. Angiogenesis 19(2):229–244

    Article  Google Scholar 

  • Yonucu S, Yιlmaz D, Phipps C, Unlu MB, Kohandel M (2017) Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy. PLoS Comput Biol 13(9):e1005724

    Article  Google Scholar 

  • Zhao G, Wu J, Xu S, Collins M, Long Q, König CS, Jiang Y, Wang J, Padhani A (2007) Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis. Acta Mech Sin 23(5):477–483

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Firoozabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 784 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikmaneshi, M.R., Firoozabadi, B. Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment. Biomech Model Mechanobiol 21, 1233–1249 (2022). https://doi.org/10.1007/s10237-022-01587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01587-0

Keywords

Navigation