Alappat C, Basermann A, Bishop AR, Fehske H, Hager G, Schenk O, Thies J, Wellein G (2020) A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans Parallel Comput (TOPC) 7(3):1–37
Article
Google Scholar
Bazilevs Y, Beirao da Veiga L, Cottrell J.A, Hughes T.J, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090
MathSciNet
MATH
Article
Google Scholar
Bollhöfer M, Eftekhari A, Scheidegger S, Schenk O (2019) Large-scale sparse inverse covariance matrix estimation. SIAM J Sci Comput 41(1):A380–A401
MathSciNet
MATH
Article
Google Scholar
Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941):741–4
Article
Google Scholar
Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, Rauova L, Lowery TJ, Weisel JW (2014) Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123(10):1596–603
Article
Google Scholar
Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken
MATH
Book
Google Scholar
De Vree J, Brekelmans W, Van Gils M (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55(4):581–588
MATH
Article
Google Scholar
Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15(4):290–299
Article
Google Scholar
Esmon CT (2009) Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 23:225–9
Article
Google Scholar
Fereidoonnezhad B, Dwivedi A, Johnson S, McCarthy R, McGarry P (2021) Blood clot fracture properties are dependent on red blood cell and fibrin content. Acta Biomaterialia 127:213–228
Article
Google Scholar
Gasser TC, Görgülü G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48(1):179–188
Article
Google Scholar
Geest JPV, Sacks MS, Vorp DA (2006) A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 39(13):2347–2354
Article
Google Scholar
Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–75
Article
Google Scholar
Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester
MATH
Google Scholar
Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195
MathSciNet
MATH
Article
Google Scholar
Janmey P.A, Amis E.J, Ferry J.D (1983) Rheology of fibrin clots. VI. Stress relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. J Rheol 27(2):135–153
Article
Google Scholar
Johnson S, Duffy S, Gunning G, Gilvarry M, McGarry JP, McHugh PE (2017) Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Ann Biomed Eng 45(11):2494–2508
Article
Google Scholar
Khodaee F, Vahidi B, Fatouraee N (2016) Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model. Biomech Model Mechanobiol 15(5):1295–1305
Article
Google Scholar
Kim OV, Liang X, Litvinov RI, Weisel JW, Alber MS, Purohit PK (2016) Foam-like compression behavior of fibrin networks. Biomech Model Mechanobiol 15(1):213–228
Article
Google Scholar
Kim OV, Litvinov RI, Alber MS, Weisel JW (2017) Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nature Commun 8:1–10
Article
Google Scholar
Lam WA, Chaudhuri O, Crow A, Webster KD, Kita A, Huang J, Fletcher DA et al (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10(1):61–66
Article
Google Scholar
Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mech 56:503–531
MathSciNet
MATH
Article
Google Scholar
Lee YU, Lee A, Humphrey J, Rausch M (2015) Histological and biomechanical changes in a mouse model of venous thrombus remodeling. Biorheology 52:235–245
Article
Google Scholar
Liu H, Holzapfel GA, Skallerud BH, Prot V (2019) Anisotropic finite strain viscoelasticity: constitutive modeling and finite element implementation. J Mech Phys Solids 124:172–188
MathSciNet
Article
Google Scholar
Liu W, Jawerth L, Sparks E, Falvo M, Hantgan R, Superfine R, Lord S, Guthold M (2006) Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787):634–634
Article
Google Scholar
Malone F, McCarthy E, Delassus P, Fahy P, Kennedy J, Fagan A, Morris L (2018) The mechanical characterisation of bovine embolus analogues under various loading conditions. Cardiovasc Eng Technol 9(3):489–502
Article
Google Scholar
Münster S, Jawerth LM, Leslie BA, Weitz JI, Fabry B, Weitz DA (2013) Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc Natl Acad Sci 110(30):12197–12202
Article
Google Scholar
Nedjar B (2016) On constitutive models of finite elasticity with possible zero apparent Poisson’s ratio. Int J Solids Struct 91:72–77
Article
Google Scholar
Ogden R (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem Technol 46:398–416
Article
Google Scholar
Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech 64(3):847–877
MathSciNet
MATH
Article
Google Scholar
Piechocka IK, Bacabac RG, Potters M, MacKintosh FC, Koenderink GH (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98(10):2281–2289
Article
Google Scholar
Rausch MK, Humphrey JD (2016) A microstructurally inspired damage model for early venous thrombus. J Mech Behav Biomed Mater 55:12–20
Article
Google Scholar
Rausch MK, Humphrey JD (2017) A computational model of the biochemomechanics of an evolving occlusive thrombus. J Elast 129:125–144
MathSciNet
MATH
Article
Google Scholar
Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall W, Essler M, Eckstein HH, Gee M (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12(4):717–733
Article
Google Scholar
Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482
MATH
Article
Google Scholar
Schulte R, Ostwald R, Menzel A (2020) Gradient-enhanced modelling of damage for rate-dependent material behaviour—a parameter identification framework. Materials 13:3156
Article
Google Scholar
Sengupta D, Kahn AM, Kung E, Moghadam ME, Shirinsky O, Lyskina GA, Burns JC, Marsden AL (2014) Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomech Model Mechanobiol 13(6):1261–1276
Article
Google Scholar
Sugerman GP, Kakaletsis S, Thakkar P, Chokshi A, Parekh SH, Rausch MK (2021) A whole blood thrombus mimic. Constitutive behavior under simple shear. J Mech Behav Biomed Mater 115:104216
Article
Google Scholar
Sugerman GP, Parekh SH, Rausch MK (2020b) Nonlinear, dissipative phenomena in whole blood clot mechanics. Soft Matter 16(43):9908–9916
Article
Google Scholar
Tutwiler V, Singh J, Litvinov R.I, Bassani J.L, Purohit P.K, Weisel J.W (2020) Rupture of blood clots: mechanics and pathophysiology. Sci Adv 6(35):eabc0496
Article
Google Scholar
van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GWH, Buth J, van de Vosse FN (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7(2):127
Article
Google Scholar
van Kempen TH, Donders WP, van de Vosse FN, Peters GW (2016) A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomech Model Mechanobiol 15:279–291
Article
Google Scholar
van Oosten AS, Chen X, Chin L, Cruz K, Patteson AE, Pogoda K, Shenoy VB, Janmey PA (2019) Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573:96–101
Article
Google Scholar
Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842
MathSciNet
MATH
Article
Google Scholar
Wang Y, Kumar S, Nisar A, Bonn M, Rausch MK, Parekh SH (2021) Probing fibrin’s molecular response to shear and tensile deformation with coherent Raman microscopy. Acta Biomaterialia 121:383–392
Article
Google Scholar
Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112(2–3):267–276
Article
Google Scholar
Wendelboe AM, Raskob GE (2016) Global burden of thrombosis: epidemiologic aspects. Circ Res 118:1340–1347
Article
Google Scholar
Zhang T, Lin S, Yuk H, Zhao X (2015) Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech Lett 4:1–8
Article
Google Scholar
Zitnay JL, Li Y, Qin Z, San BH, Depalle B, Reese SP, Buehler MJ, Yu SM, Weiss JA (2017) Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat Commun 8(1):1–12
Article
Google Scholar