Skip to main content

Hyper-viscoelastic damage modeling of whole blood clot under large deformation

Abstract

Blood clots play a diametric role in our bodies as they are both vital as a wound sealant, as well as the source for many devastating diseases. In blood clots’ physiological and pathological roles, their mechanics play a critical part. These mechanics are non-trivial owing to blood clots’ complex nonlinear, viscoelastic behavior. Casting this behavior into mathematical form is a fundamental step toward a better basic scientific understanding of blood clots, as well as toward diagnostic and prognostic computational models. Here, we identify a hyper-viscoelastic damage model that we fit to original data on the nonlinear, viscoelastic behavior of blood clots. Our model combines the classic Ogden hyperelastic constitutive law, a finite viscoelastic model for large deformations, and a non-local, gradient-enhanced damage formulation. By fitting our model to cyclic tensile test data and extension-to-failure data, we inform the model’s nine unknown material parameters. We demonstrate the predictability of our model by validating it against unseen cyclic tensile test and stress-relaxation data. Our original data, model formulation, and the identified constitutive parameters of this model are openly available for others to use, which will aid in developing accurate, quantitative simulations of blood clot mechanics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability Statement

Data are made available on the Texas Data Repository under https://dataverse.tdl.org/dataverse/Clothyperviscodamagedata.

Notes

  1. To account for multiple relaxation mechanisms (\(k{=}1,\dots ,n\)), one can modify the local free energy as \(\Psi {=} \Psi (\varvec{C}, \varvec{F}_v^1, \dots , \varvec{F}_v^n) = \Psi _{\mathrm{EQ}}(\varvec{C}) + \sum _{k=1}^{n} \Psi _{\mathrm{NEQ}}^k({[{\varvec{F}}_v^k]}{}^{\text {-}\text { T}}\cdot \varvec{C}\cdot {[{\varvec{F}}_v^k]}{}^{\text { -}\text { 1}})\). In the numerical calculations, we adopt \(n{=}2\) considering both short-term and long-term behaviors of the material.

References

  • Alappat C, Basermann A, Bishop AR, Fehske H, Hager G, Schenk O, Thies J, Wellein G (2020) A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans Parallel Comput (TOPC) 7(3):1–37

    Article  Google Scholar 

  • Bazilevs Y, Beirao da Veiga L, Cottrell J.A, Hughes T.J, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090

    MathSciNet  MATH  Article  Google Scholar 

  • Bollhöfer M, Eftekhari A, Scheidegger S, Schenk O (2019) Large-scale sparse inverse covariance matrix estimation. SIAM J Sci Comput 41(1):A380–A401

    MathSciNet  MATH  Article  Google Scholar 

  • Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941):741–4

    Article  Google Scholar 

  • Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, Rauova L, Lowery TJ, Weisel JW (2014) Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123(10):1596–603

    Article  Google Scholar 

  • Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    MATH  Book  Google Scholar 

  • De Vree J, Brekelmans W, Van Gils M (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55(4):581–588

    MATH  Article  Google Scholar 

  • Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15(4):290–299

    Article  Google Scholar 

  • Esmon CT (2009) Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 23:225–9

    Article  Google Scholar 

  • Fereidoonnezhad B, Dwivedi A, Johnson S, McCarthy R, McGarry P (2021) Blood clot fracture properties are dependent on red blood cell and fibrin content. Acta Biomaterialia 127:213–228

    Article  Google Scholar 

  • Gasser TC, Görgülü G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48(1):179–188

    Article  Google Scholar 

  • Geest JPV, Sacks MS, Vorp DA (2006) A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 39(13):2347–2354

    Article  Google Scholar 

  • Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–75

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Article  Google Scholar 

  • Janmey P.A, Amis E.J, Ferry J.D (1983) Rheology of fibrin clots. VI. Stress relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. J Rheol 27(2):135–153

    Article  Google Scholar 

  • Johnson S, Duffy S, Gunning G, Gilvarry M, McGarry JP, McHugh PE (2017) Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Ann Biomed Eng 45(11):2494–2508

    Article  Google Scholar 

  • Khodaee F, Vahidi B, Fatouraee N (2016) Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model. Biomech Model Mechanobiol 15(5):1295–1305

    Article  Google Scholar 

  • Kim OV, Liang X, Litvinov RI, Weisel JW, Alber MS, Purohit PK (2016) Foam-like compression behavior of fibrin networks. Biomech Model Mechanobiol 15(1):213–228

    Article  Google Scholar 

  • Kim OV, Litvinov RI, Alber MS, Weisel JW (2017) Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nature Commun 8:1–10

    Article  Google Scholar 

  • Lam WA, Chaudhuri O, Crow A, Webster KD, Kita A, Huang J, Fletcher DA et al (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10(1):61–66

    Article  Google Scholar 

  • Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mech 56:503–531

    MathSciNet  MATH  Article  Google Scholar 

  • Lee YU, Lee A, Humphrey J, Rausch M (2015) Histological and biomechanical changes in a mouse model of venous thrombus remodeling. Biorheology 52:235–245

    Article  Google Scholar 

  • Liu H, Holzapfel GA, Skallerud BH, Prot V (2019) Anisotropic finite strain viscoelasticity: constitutive modeling and finite element implementation. J Mech Phys Solids 124:172–188

    MathSciNet  Article  Google Scholar 

  • Liu W, Jawerth L, Sparks E, Falvo M, Hantgan R, Superfine R, Lord S, Guthold M (2006) Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787):634–634

    Article  Google Scholar 

  • Malone F, McCarthy E, Delassus P, Fahy P, Kennedy J, Fagan A, Morris L (2018) The mechanical characterisation of bovine embolus analogues under various loading conditions. Cardiovasc Eng Technol 9(3):489–502

    Article  Google Scholar 

  • Münster S, Jawerth LM, Leslie BA, Weitz JI, Fabry B, Weitz DA (2013) Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc Natl Acad Sci 110(30):12197–12202

    Article  Google Scholar 

  • Nedjar B (2016) On constitutive models of finite elasticity with possible zero apparent Poisson’s ratio. Int J Solids Struct 91:72–77

    Article  Google Scholar 

  • Ogden R (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem Technol 46:398–416

    Article  Google Scholar 

  • Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech 64(3):847–877

    MathSciNet  MATH  Article  Google Scholar 

  • Piechocka IK, Bacabac RG, Potters M, MacKintosh FC, Koenderink GH (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98(10):2281–2289

    Article  Google Scholar 

  • Rausch MK, Humphrey JD (2016) A microstructurally inspired damage model for early venous thrombus. J Mech Behav Biomed Mater 55:12–20

    Article  Google Scholar 

  • Rausch MK, Humphrey JD (2017) A computational model of the biochemomechanics of an evolving occlusive thrombus. J Elast 129:125–144

    MathSciNet  MATH  Article  Google Scholar 

  • Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall W, Essler M, Eckstein HH, Gee M (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12(4):717–733

    Article  Google Scholar 

  • Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    MATH  Article  Google Scholar 

  • Schulte R, Ostwald R, Menzel A (2020) Gradient-enhanced modelling of damage for rate-dependent material behaviour—a parameter identification framework. Materials 13:3156

    Article  Google Scholar 

  • Sengupta D, Kahn AM, Kung E, Moghadam ME, Shirinsky O, Lyskina GA, Burns JC, Marsden AL (2014) Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomech Model Mechanobiol 13(6):1261–1276

    Article  Google Scholar 

  • Sugerman GP, Kakaletsis S, Thakkar P, Chokshi A, Parekh SH, Rausch MK (2021) A whole blood thrombus mimic. Constitutive behavior under simple shear. J Mech Behav Biomed Mater 115:104216

    Article  Google Scholar 

  • Sugerman GP, Parekh SH, Rausch MK (2020b) Nonlinear, dissipative phenomena in whole blood clot mechanics. Soft Matter 16(43):9908–9916

    Article  Google Scholar 

  • Tutwiler V, Singh J, Litvinov R.I, Bassani J.L, Purohit P.K, Weisel J.W (2020) Rupture of blood clots: mechanics and pathophysiology. Sci Adv 6(35):eabc0496

    Article  Google Scholar 

  • van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GWH, Buth J, van de Vosse FN (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7(2):127

    Article  Google Scholar 

  • van Kempen TH, Donders WP, van de Vosse FN, Peters GW (2016) A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomech Model Mechanobiol 15:279–291

    Article  Google Scholar 

  • van Oosten AS, Chen X, Chin L, Cruz K, Patteson AE, Pogoda K, Shenoy VB, Janmey PA (2019) Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573:96–101

    Article  Google Scholar 

  • Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842

    MathSciNet  MATH  Article  Google Scholar 

  • Wang Y, Kumar S, Nisar A, Bonn M, Rausch MK, Parekh SH (2021) Probing fibrin’s molecular response to shear and tensile deformation with coherent Raman microscopy. Acta Biomaterialia 121:383–392

    Article  Google Scholar 

  • Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112(2–3):267–276

    Article  Google Scholar 

  • Wendelboe AM, Raskob GE (2016) Global burden of thrombosis: epidemiologic aspects. Circ Res 118:1340–1347

    Article  Google Scholar 

  • Zhang T, Lin S, Yuk H, Zhao X (2015) Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech Lett 4:1–8

    Article  Google Scholar 

  • Zitnay JL, Li Y, Qin Z, San BH, Depalle B, Reese SP, Buehler MJ, Yu SM, Weiss JA (2017) Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat Commun 8(1):1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Texas at Austin William’s Excellence Award and by the National Science Foundation under Award BMMB-2046148. Dr. Rausch also discloses a financial relationship to Edwards Lifesciences. We also thank our colleague Dr. Sapun Parekh for his editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel K. Rausch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 901 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rausch, M.K., Sugerman, G.P., Kakaletsis, S. et al. Hyper-viscoelastic damage modeling of whole blood clot under large deformation. Biomech Model Mechanobiol 20, 1645–1657 (2021). https://doi.org/10.1007/s10237-021-01467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01467-z

Keywords

  • Nonlocal damage
  • Finite viscoelasticity
  • Thrombus
  • Finite element