Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 4, pp 1093–1106 | Cite as

Bone toughening through stress-induced non-collagenous protein denaturation

  • Z. Wang
  • D. Vashishth
  • R. C. Picu
Original Paper


Bone toughness emerges from the interaction of several multiscale toughening mechanisms. Recently, the formation of nanoscale dilatational bands and hence the accumulation of submicron diffuse damage were suggested as an important energy dissipation processes in bone. However, a detailed mechanistic understanding of the effect of this submicron toughening mechanism across multiple scales is lacking. Here, we propose a new three-dimensional ultrastructure volume element model showing the formation of nanoscale dilatational bands based on stress-induced non-collagenous protein denaturation and quantify the total energy released through this mechanism in the vicinity of a propagating crack. Under tensile deformation, large hydrostatic stress develops at the nanoscale as a result of local confinement. This tensile hydrostatic stress supports the denaturation of non-collagenous proteins at organic–inorganic interfaces, which leads to energy dissipation. Our model provides new fundamental understanding of the mechanism of dilatational bands formation and its contribution to bone toughness.


Bone Mineralized collagen fibril Finite element modeling Non-collagenous proteins Fracture toughness 



This study was financially supported by the US National Science Foundation (NSF) through Grant CMMI 1363526 and the National Institute of Health (NIH) through Grant AR49635.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2018_1016_MOESM1_ESM.docx (360 kb)
Supplementary material 1 (docx 360 KB)


  1. Almer JD, Stock SR (2005) Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J Struct Biol 152:14–27CrossRefGoogle Scholar
  2. Almer JD, Stock SR (2007) Micromechanical response of mineral and collagen phases in bone. J Struct Biol 157:365–370. CrossRefGoogle Scholar
  3. Alexander B, Daulton TL, Genin GM et al (2012) The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J R Soc Interface 9:1774–1786. CrossRefGoogle Scholar
  4. Bonar LC, Lees S, Mook HA (1985) Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol 181:265–270CrossRefGoogle Scholar
  5. Boskey AL, Gadaleta S, Gundberg C et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196. CrossRefGoogle Scholar
  6. Burger C, Zhou H-W, Wang H et al (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95:1985–1992. CrossRefGoogle Scholar
  7. Burr DB, Milgrom C, Fyhrie D et al (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410. CrossRefGoogle Scholar
  8. Burr DB, Turner CH, Naick P et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345. CrossRefGoogle Scholar
  9. Ciuchi IV, Olariu CS, Mitoseriu L (2013) Determination of bone mineral volume fraction using impedance analysis and Bruggeman model. Mater Sci Eng B 178:1296–1302. CrossRefGoogle Scholar
  10. Cowin SC, Weinbaum S (1998) Strain amplification in the bone mechanosensory system. Am J Med Sci 316:184–188. Google Scholar
  11. De Buffrénil V, Dabin W, Zylberberg L (2004) Histology and growth of the cetacean petro-tympanic bone complex. J Zool 262:371–381. CrossRefGoogle Scholar
  12. Deshpande AS, Beniash E (2008) Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth Des 8:3084–3090. CrossRefGoogle Scholar
  13. Ellman R, Spatz J, Cloutier A et al (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28:875–885. CrossRefGoogle Scholar
  14. Fantner GE, Hassenkam T, Kindt JH et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:nmat1428–616. CrossRefGoogle Scholar
  15. Fantner GE, Adams J, Turner P et al (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7:2491–2498. CrossRefGoogle Scholar
  16. Fratzl P, Paris O, Klaushofer K, LW J (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97(2):396–402. CrossRefGoogle Scholar
  17. Grynpas MD, Bonar LC, Glimcher MJ (1984) X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J Mater Sci 19:723–736. CrossRefGoogle Scholar
  18. Gupta HS, Messmer P, Roschger P et al (2004) Synchrotron diffraction study of deformation mechanisms in mineralized tendon. Phys Rev Lett 93:158101. CrossRefGoogle Scholar
  19. Gupta HS, Fratzl P, Kerschnitzki M et al (2006) Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 ev. J R Soc Interface 4:277–282. CrossRefGoogle Scholar
  20. Hall BK (2015) Chapter 24—Osteoblast and osteocyte diversity and osteogenesis in vitro. Bones and cartilage, 2nd edn. Academic, San Diego, pp 401–413Google Scholar
  21. Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213:131–154. CrossRefzbMATHGoogle Scholar
  22. Hamed E, Jasiuk I, Yoo A et al (2012) Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interface 9:1654–1673. CrossRefGoogle Scholar
  23. Hang F, Barber AH (2011) Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J R Soc Interface 8:500–505. CrossRefGoogle Scholar
  24. Hang F, Gupta HS, Barber AH (2014) Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. J R Soc Interface 11:20130993CrossRefGoogle Scholar
  25. Hauschka PV, Wians FH (1989) Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec 224:180–188. CrossRefGoogle Scholar
  26. Hodge AJ, Petruska JA (1962) Some recent results on the electron microscopy of tropocollagen structures. In: Breese SS Jr (ed) Proc. of the fifth Internat. Congr. for Electron Microscopy, vol 2. Academic, New York, p QQ-1Google Scholar
  27. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746. CrossRefGoogle Scholar
  28. Jaschouz D, Paris O, Roschger P et al (2003) Pole figure analysis of mineral nanoparticle orientation in individual trabecular of human vertebral bone. J Appl Cryst 36:494–498. CrossRefGoogle Scholar
  29. Ji B (2008) A study of the interface strength between protein and mineral in biological materials. J Biomech 41:259–266. CrossRefGoogle Scholar
  30. Jin H, Lewis JL (2004) Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J Biomech Eng 126:138–145. CrossRefGoogle Scholar
  31. Karunaratne A, Esapa CR, Hiller J et al (2012) Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: Evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 27:876–890. CrossRefGoogle Scholar
  32. Kiviranta P, Rieppo J, Korhonen RK et al (2006) Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res 24:690–699. CrossRefGoogle Scholar
  33. Koch CF, Johnson S, Kumar D et al (2007) Pulsed laser deposition of hydroxyapatite thin films. Mater Sci Eng C 27:484–494. CrossRefGoogle Scholar
  34. Landis WJ, Hodgens KJ, Arena J et al (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202CrossRefGoogle Scholar
  35. Lees S, Prostak K (1988) The locus of mineral crystallites in bone. Connect Tissue Res 18:41–54. CrossRefGoogle Scholar
  36. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Unstructured Mesh Generation. Comput Methods Appl Mech Eng 194:4915–4950. CrossRefzbMATHGoogle Scholar
  37. McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE 7(1):e29258. CrossRefGoogle Scholar
  38. Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: Structure and mechanical properties. Prog Mater Sci 53:1–206. CrossRefGoogle Scholar
  39. Mullins LP, Bruzzi MS, mchugh PE (2007) Measurement of the microstructural fracture toughness of cortical bone using indentation fracture. J Biomech 40:3285–3288. CrossRefGoogle Scholar
  40. Nair AK, Gautieri A, Chang SW, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724CrossRefGoogle Scholar
  41. Nair AK, Gautieri A, Buehler MJ (2014) Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules 15:2494–2500. CrossRefGoogle Scholar
  42. Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2:164–168. CrossRefGoogle Scholar
  43. Neil Dong X, Edward Guo X (2004) The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech 37:1281–1287. CrossRefGoogle Scholar
  44. Nikel O, Laurencin D, mccallum SA et al (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic–inorganic interface in bone. Langmuir 29:13873–13882. CrossRefGoogle Scholar
  45. Peroos S, Du Z, de Leeuw NH (2006) A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials 27:2150–2161. CrossRefGoogle Scholar
  46. Pidaparti RM, Chandran A, Takano Y, Turner CH (1996) Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osternal bone. J Biomech 29:909–916CrossRefGoogle Scholar
  47. Poundarik AA, Gundberg CM, Vashishth D (2011) Non-collageneous proteins influence bone crystal size and morphology: a SAXS study. In: 2011 IEEE 37th annual northeast bioengineering conference (NEBEC), Troy, pp 1–2.
  48. Poundarik AA, Diab T, Sroga GE et al (2012) Dilatational band formation in bone. Proc Natl Acad Sci. Google Scholar
  49. Poundarik AA, Wu P-C, Evis Z et al (2015) A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater 52:120–130. CrossRefGoogle Scholar
  50. Rath Bonivtch A, Bonewald LF, Nicolella DP (2007) Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J Biomech 40:2199–2206. CrossRefGoogle Scholar
  51. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826. CrossRefGoogle Scholar
  52. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102. CrossRefGoogle Scholar
  53. Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7:877–885. CrossRefGoogle Scholar
  54. Rubin MA, Jasiuk I, Taylor J et al (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282. CrossRefGoogle Scholar
  55. Schaffler MB, Radin EL, Burr DB (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214. CrossRefGoogle Scholar
  56. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525. CrossRefGoogle Scholar
  57. Schwarcz HP, mcnally EA, Botton GA (2014) Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J Struct Biol 188:240–248. CrossRefGoogle Scholar
  58. Seref-Ferlengez Z, Basta-Pljakic J (2014) Structural and mechanical repair of diffuse damage in cortical bone in vivo. J Bone Miner Res 29:2537–2544. CrossRefGoogle Scholar
  59. Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J FractMech 1:189–203. Google Scholar
  60. Siegmund T, Allen MR, Burr DB (2008) Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech 41:1427–1435. CrossRefGoogle Scholar
  61. Sroga GE, Vashishth D (2012) Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep 10:141–150. CrossRefGoogle Scholar
  62. Stock SR (2015) The mineral–collagen interface in bone. Calcif Tissue Int 97:1–19. CrossRefGoogle Scholar
  63. Stroh AN (1962) Steady state problems in anisotropic elasticity. J Math Phys 41:77–103. MathSciNetCrossRefzbMATHGoogle Scholar
  64. Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32:150–162. CrossRefGoogle Scholar
  65. Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone. Nat Mater 6:263–268. CrossRefGoogle Scholar
  66. Termine JD, Kleinman HK, Whitson SW et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105. CrossRefGoogle Scholar
  67. Tresoldi I, Oliva F, Benvenuto M et al (2013) Tendon’s ultrastructure. Muscles Ligaments Tendons J 3(1):2–6. Google Scholar
  68. Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37:943–946. CrossRefGoogle Scholar
  69. Vashishth D, Behiri JC, Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 30:763–769. CrossRefGoogle Scholar
  70. Vashishth D, Koontz J, Qiu SJ et al (2000) In vivo diffuse damage in human vertebral trabecular bone. Bone 26:147–152. CrossRefGoogle Scholar
  71. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure–function relations. J Struct Biol 126:241–255. CrossRefGoogle Scholar
  72. Yuan F, Stock SR, Haeffner DR et al (2010) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160. CrossRefGoogle Scholar
  73. Zimmermann EA, Gludovatz B, Schaible E et al (2014) Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 35:5472–5481. CrossRefGoogle Scholar
  74. Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations