In vitro exposure of nasal epithelial cells to atmospheric dust

Abstract

Dust storms are common phenomena in many parts of the world, and significantly increase the level of atmospheric particulate matter (PM). The soil-derived dust is a mixture of organic and inorganic particles and even remnants of pesticides from agricultural areas nearby. The risk of human exposure to atmospheric dust is well documented, but very little is known on the impact of inhaled PM on the biological lining of the nasal cavity, which is the natural filter between the external environment and the respiratory tract. We developed a new system and methodology for in vitro exposure of cultured nasal epithelial cells (NEC) to atmospheric soil-dust pollutants under realistic and controlled laboratory simulations that mimic nasal breathing. We exposed cultured NEC to clean and dust-polluted airflows that mimic physiological conditions. The results revealed that the secretion of mucin and IL-8 from the NEC exposed to clean and dust-polluted airflows was less than the secretion at static conditions under clean air. The secretion of IL-8 from NEC exposed to dust-polluted air was larger than that of clean air, but not larger than in the static case. The experiments with dust air pollution that also contained agricultural pesticides did not reveal differences in the secretion of mucin and IL-8 as compared to the same pollution without pesticides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–75

    Article  Google Scholar 

  2. Aufderheide M, Knebel JW, Ritter D (2003) Novel approaches for studying pulmonary toxicity in vitro. Toxicol Lett 140–141:205–11

    Article  Google Scholar 

  3. Auger F, Gendron MC, Chamot C, Marano F, Dazy AC (2006) Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 215(3):285–94

    Article  Google Scholar 

  4. Calderón-Garcidueñas L, Franco-Lira M, Torres-Jardón R, Henriquez-Roldán C, Barragán-Mejía G, Valencia-Salazar G, González-Maciel A, Reynoso-Robles R, Villarreal-Calderón R, Reed W (2007) Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology. Toxicol Pathol 35:154–62

    Article  Google Scholar 

  5. Calderon-Garciduenas L, Rodrıguez-Alcaraz A, Villarreal-Calderon A, Lyght O, Janszen D, Morgan KT (1998) Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol Sci 46:352–364

    Article  Google Scholar 

  6. Calderon-Garcidueñas L, Valencia-Salazar G, Rodríguez-Alcaraz A, Gambling TM, García R, Osnaya N, Villarreal-Calderón A, Devlin RB, Carson JL (2001) Ultrastructural nasal pathology in children chronically and sequentially exposed to air pollutants. Am J Respir Cell Mol Biol 24:132–138

    Article  Google Scholar 

  7. Davidovitch NET, Kloog Y, Wolf M, Elad D (2011) Mechanophysical stimulation of mucin secretion in cultures of nasal epithelial cells. Biophys J 100:2855–2864

    Article  Google Scholar 

  8. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–6

    Article  Google Scholar 

  9. Elad D (1999) Biotransport in the human respiratory system. Technol Health Care 7:271–284

    Google Scholar 

  10. Elad D, Wolf M, Keck T (2008) Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol 163:121–127

    Article  Google Scholar 

  11. Even-Tzur N, Elad D, Zaretsky U, Randel SH, Haklai R, Wolf M (2006) Custom-designed wells and flow chamber for exposing air-liquid interface cultures to wall shear stress. Ann Biomed Eng 34:1890–5

    Article  Google Scholar 

  12. Even-Tzur N, Kloog Y, Wolf M, Elad D (2008) Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 95:2998–3008

    Article  Google Scholar 

  13. Ganor E, Foner HA (2001) Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. J Geophys Res 106:18431

    Article  Google Scholar 

  14. Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34(3):252–69

    Article  Google Scholar 

  15. Katra I, Arotsker L, Krasnov H, Zaritski A, Kushmaro A, Ben-Dov A (2014) Richness and diversity in dust stormborne biomes at the southeast mediterranean. Sci Rep 4:5265

    Article  Google Scholar 

  16. Krasnov H, Katra I, Koutrakis P, Friger M (2014) Contribution of dust storms to PM10 levels in an urban arid environment. J Air Waste Manag Assoc 64:89–94

    Article  Google Scholar 

  17. Krasnov H, Katra I, Friger M (2016a) Increase in dust storm related PM10 concentrations: a time series analysis of 2001–2015. Environ Pollut 213:36–42

    Article  Google Scholar 

  18. Krasnov H, Katra I, Friger M, Kloog I (2016b) The spatio-temporal distribution of particulate matter during natural dust episodes at an urban scale. PLoS ONE 11(8):e0160800

    Article  Google Scholar 

  19. Maier KL, Alessandrini F, Beck-Speier I, Hofer TP, Diabaté S, Bitterle E, Stöger T, Jakob T, Behrendt H, Horsch M, Beckers J, Ziesenis A, Hültner L, Frankenberger M, Krauss-Etschmann S, Schulz H (2008) Health effects of ambient particulate matter-biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhal Toxicol 20(3):319–37

    Article  Google Scholar 

  20. Pauluhn J (2003) Overview of testing methods used in inhalation toxicity: from facts to artifacts. Toxicol Lett 140–141:183–93

    Article  Google Scholar 

  21. Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3:13

    Article  Google Scholar 

  22. Rabe KF, Decramer M, Siafakas N (2010) The year of the lung. Lancet 376(9743):753–4

    Article  Google Scholar 

  23. Rappaport SM, Smith MT (2010) Epidemiology. Environment and disease risks. Science 330(6003):460–1

    Article  Google Scholar 

  24. Riechelmann H (2000) The nose versus the environment: 1982 and today. Am J Rhinol 14:291–297

    Article  Google Scholar 

  25. Rodriguez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Sharan dust contributions to \(\text{ PM }_{10}\) and TSP levels in Southern and Eastern Spain. Atmos Environ 35:2433–2447

    Article  Google Scholar 

  26. Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374(9691):733–43

    Article  Google Scholar 

  27. Vanderstraeten P, Lénelle Y, Meurrens A, Carati D, Brenig L, Offer ZY, Zaady E (2007) Micromorphology and chemistry of airborne particles during agriculture working periods in Brussels surrounding region. Environ Monit Assess 146:33–39

    Article  Google Scholar 

  28. Vanderstraeten P, Lénelle Y, Meurrens A, Carati D, Brenig L, Delcloo A, Offer ZY, Zaady E (2008) Desert storm originate from Sahara covering Western Europe; a case study. Atmos Environ 42:5489–5493

    Article  Google Scholar 

  29. Vanderstraeten P, Forton M, Lénelle Y, Meurrens A, Carati D, Brenig L, Offer ZY, Zaady E (2010) Elevated PM10 concentrations and high PM2, 5/PM10 ratio in the Brussels urban area during the 2006 Car-Free Sunday. Waste Manag 3:264–279

    Google Scholar 

  30. Vineis P, Husgafvel-Pursiainen K (2005) Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 26:1846–55

    Article  Google Scholar 

  31. Vineis P, Hoek G, Krzyzanowski M, Vigna-Taglianti F, Veglia F, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulou A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Lund EE, Agudo A, Martinez C, Dorronsoro M, Barricarte A, Cirera L, Quiros JR, Berglund G, Manjer J, Forsberg B, Day NE, Key TJ, Kaaks R, Saracci R, Riboli E (2007) Lung cancers attributable to environmental tobacco smoke and air pollution in non-smokers in different European countries: a prospective study. Environ Health 6:7

    Article  Google Scholar 

  32. Vodonos A, Friger M, Katra I, Krasnov H, Zager D, Schwartz J, Novack V (2015) Individual effect modifiers of dust exposure effect on cardiovascular morbidity. PLoS ONE. 10(9):e0137714

  33. Voynow JA, Rubin BK (2009) Mucins, mucus, and sputum. Chest 135:505–12

    Article  Google Scholar 

  34. Wang H, Zhuang Y, Wang Y, Sun Y, Yuan H, Zhuang G, Hao Z (2008) Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J Environ Sci 20:1323–1327

    Article  Google Scholar 

  35. Wolf M, Naftali S, Schroter RC, Elad D (2004) Air-conditioning characteristics of the human nose. J Laryngol Otol 118(2):87–92

    Article  Google Scholar 

  36. Yitshak-Sade M, Novack V, Katra I, Gorodischer R, Tal A, Novack L (2015) Non-anthropogenic dust exposure and asthma medications purchase in children. Eur Respir J. 45(3):652–60

    Article  Google Scholar 

  37. Yoshizaki K, Fuziwara CS, Brito JM, Santos TM, Kimura ET, Correia AT, Amato-Lourenco LF, Vasconcellos P, Silva LF, Brentani MM, Mauad T, Saldiva PH, Macchione M (2016) The effects of urban particulate matter on the nasal epithelium by gender: an experimental study in mice. Environ Pollut 213:359–69

    Article  Google Scholar 

  38. Zaady E, Brenig L, Carati D, Vanderstraeten P, Lénelle Y, Meurrens A, Offer ZY (2008) Agricultural activities impact on atmospheric pollution in urban area of Brussels. Geogr Stud Forum Environ Prot 7:196–199

    Google Scholar 

  39. Zaady E, Carati D, Brenig L, Vanderstraeten P, Lénelle Y, Meurrens A, Offer ZY (2010) Weekly variations of atmospheric particles, micromorphology and chemistry in the Brussels urban environment. Environ Monit Assess 169:45–54

    Article  Google Scholar 

  40. Zaady E, Dody A, Weiner D, Barkai D, Offer ZY (2009) A comprehensive method for aeolian particle granulometry and micromorphology analyses. Environ Monit Assess 155:169–175

    Article  Google Scholar 

  41. Zaady E, Offer YZ, Shachak M (2001) The content and contribution of the accumulated aeolian organic matter in a dry ecosystem. Atmos Environ 35:769–776

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant Numbers 3-9015 and 3-9143 from the Israeli Ministry of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Elad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elad, D., Zaretsky, U., Avraham, S. et al. In vitro exposure of nasal epithelial cells to atmospheric dust. Biomech Model Mechanobiol 17, 891–901 (2018). https://doi.org/10.1007/s10237-017-0999-y

Download citation

Keywords

  • Air-liquid interface (ALI) culture
  • Nasal epithelium
  • Dust
  • Particulate matter (PM)
  • Respiratory airflow
  • Environmental climate
  • Cell mechanics