Skip to main content

Advertisement

Log in

Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Implantation of biodegradable scaffold is considered as a promising method to treat bone disorders, but knowledge of the dynamic bone repair process is extremely limited. In this study, based on the representative volume cell of a periodic scaffold, the influence of rehabilitation exercise duration per day on the bone repair was investigated by a computational framework. The framework coupled scaffold degradation and bone remodeling. The scaffold degradation was described by a function of stochastic hydrolysis independent of mechanical stimulation, and the bone formation was remodeled by a function of the mechanical stimulation, i.e., strain energy density. Then, numerical simulations were performed to study the dynamic bone repair process. The results showed that the scaffold degradation and the bone formation in the process were competitive. An optimal exercise duration per day emerged. All exercise durations promoted the bone maturation with a final Young’s modulus of 1.9 ± 0.3 GPa. The present study connects clinical rehabilitation and fundamental research, and is helpful to understand the bone repair process and further design bone scaffold for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi T, Tsubota K, Tomita Y (2001) Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J Biomech Eng 123(5):403–9

    Article  Google Scholar 

  • Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–72

    Article  Google Scholar 

  • Blanchard R, Dejaco A, Bongaers E et al (2013) Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 46(15):2710–21

    Article  Google Scholar 

  • Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/\(\beta \)-TCP for bone tissue engineering. Bone 46(2):386–95

    Article  Google Scholar 

  • Cao Y, Mitchell G, Messina A et al (2006) The influence of architecture on degradation and tissue ingrowth into three-dimensional poly (lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials 27(14):2854–64

    Article  Google Scholar 

  • Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue lnt 36:S19–24

    Article  Google Scholar 

  • Carter DR, Spengler DM (1978) Mechanical properties and composition of cortical bone. Clin Orthop Relat Res 135:192–217

    Google Scholar 

  • Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22:231–44

    Article  Google Scholar 

  • Chawla AS, Chang TM (1985–1986) In-vivo degradation of poly(lactic acid) of different molecular weights. Biomater Med Devices Artif Organs 13(3–4):153–62

  • Chen Y, Zhou S, Li Q (2011a) Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 7(3):1140–9

    Article  Google Scholar 

  • Chen Y, Zhou S, Li Q (2011b) Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 32:5003–14

    Article  Google Scholar 

  • Chen Q, Baino F, Spriano S et al (2014) Modelling of the strength-porosity relationship in glass-ceramic foam scaffolds for bone repair. J Eur Ceram Soc 34(11):2663–73

    Article  Google Scholar 

  • Courteix D, Lespessailles E, Peres SL et al (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8(2):152–8

    Article  Google Scholar 

  • Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elasticity 6:313–26

    Article  MathSciNet  MATH  Google Scholar 

  • Dillaman RM, Roer RD, Gay DM (1991) Fluid movement in bone: theoretical and empirical. J Biomech 24(suppl 1):163–77

    Article  Google Scholar 

  • Fan YB, Li P, Zeng L, Huang XJ (2008) Effects of mechanical load on the degradation of poly(D, L-lactic acid) foam. Polym Degrad Stab 93(3):677–83

    Article  Google Scholar 

  • Ferrero C, Bravo I, Jiménez-Castellanos MR (2003) Drug release kinetics and fronts movement studies from methyl methacrylate (MMA) copolymer matrix tablets: effect of copolymer type and matrix porosity. J Control Release 92(1):69–82

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  Google Scholar 

  • Frost HM (1964) The laws of bone structure. C.C. Thomas, Springfield

    Google Scholar 

  • Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226(4):414–22

    Article  Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275:1081–101

    Article  Google Scholar 

  • Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4:304–17

    Article  Google Scholar 

  • Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–28

    Article  Google Scholar 

  • Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–14

    Article  Google Scholar 

  • Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–604

    Article  Google Scholar 

  • Gopferich A, Langer R (1993) Modeling of polymer erosion. Macromolecules 26:4105–12

    Article  Google Scholar 

  • Helder J, Dijkstra PJ, Feijen J (1990) In vitro degradation of glycine/DL-lactic acid copolymers. J Biomed Mater Res 24(8):1005–20

    Article  Google Scholar 

  • Hellmich C, Ulm FJ, Dormieux L (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech Model Mechanobiol 2(4):219–38

    Article  Google Scholar 

  • Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 36(1):108

    Article  Google Scholar 

  • Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 43(7):573–81

    Article  Google Scholar 

  • Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–103

    Article  Google Scholar 

  • Horwithz AR, Parsons JT (1999) Cell migration-movin’ on. Science 286(5542):1102–3

    Article  Google Scholar 

  • Hou JC, Salem GJ, Zernicke RF et al (1990) Structural and mechanical adaptations of immature trabecular bone to strenuous exercise. J Appl Physiol 69(4):1309–14

    Article  Google Scholar 

  • Huang S, Chen Z, Pugno N et al (2014) A novel model for porous scaffold to match the mechanical anisotropy and the hierarchical structure of bone. Mater Lett 122:315–9

    Article  Google Scholar 

  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–50

    Article  Google Scholar 

  • Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27(9):1159–68

    Article  Google Scholar 

  • Langer R, Peppas N (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J Mater Sci C 23(1):61–126

    Google Scholar 

  • Lewandrowski KU, Gresser JD, Wise DL et al (2000) Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21(8):757–64

    Article  Google Scholar 

  • Li H, Chang J (2005) pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos Sci Technol 65(14):2226–32

    Article  Google Scholar 

  • Luczynski KW, Dejaco A, Lahayne O et al (2012) MicroCT/micromechanics-based finite element models and quasi-static unloading tests deliver consistent values for Young’s modulus of rapid-prototyped polymer-ceramic tissue engineering scaffold. Comput Model Eng Sci 87(6):505–28

    MATH  Google Scholar 

  • McIntosh L, Cordell JM, Johnson AJW (2009) Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater 5(2):680–92

    Article  Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–46

    Article  Google Scholar 

  • Morgan TG, Bostrom MP, van der Meulen MC (2015) Tissue-level remodeling simulations of cancellous bone capture effects of in vivo loading in a rabbit model. J Biomech 48(5):875–82

    Article  Google Scholar 

  • Pistner H, Bendix DR, Muhling J, Reuther JF (1993) Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization. Biomaterials 14(4):291–8

    Article  Google Scholar 

  • Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 2(4):215–20

    Article  Google Scholar 

  • Ruimerman R, Hilbers P, van Rietbergen B et al (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–41

    Article  Google Scholar 

  • Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput Method Appl Mech Eng 254:181–96

    Article  MathSciNet  MATH  Google Scholar 

  • Scheiner S, Pivonka P, Smith DW et al (2014) Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab. Int J Numer Method Biomed Eng 30(1):1–27

    Article  MathSciNet  Google Scholar 

  • Scheiner S, Pivonka P, Hellmich C (2016a) Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech Model Mechanobiol 15(1):9–28

    Article  Google Scholar 

  • Scheiner S, Komlev VS, Hellmich C (2016b) Strength increase during ceramic biomaterial-induced bone regeneration: a micromechanical study. Int J Fract 202(2):217–35

    Article  Google Scholar 

  • Schulte FA, Zwahlen A, Lambers FM, Kuhn G, Ruffoni D, Betts D, Webster DJ, Muller R (2013) Strain-adaptive in silico modeling of bone adaptation-a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1):485–92

    Article  Google Scholar 

  • Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12):2440–50

    Article  Google Scholar 

  • Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48(2–3):229–47

    Article  Google Scholar 

  • Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci A A33(5):585–97

    Article  Google Scholar 

  • Sturm S, Zhou S, Mai YW, Li Q (2010) On stiffness of scaffolds for bone tissue engineering-a numerical study. J Biomech 43(9):1738–44

    Article  Google Scholar 

  • Thompson DE, Agrawal CM, Athanasiou K (1996) The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic Acid-polyglycolic Acid. Tissue Eng 2(1):61–74

    Article  Google Scholar 

  • Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43(6):1789–96

    Article  Google Scholar 

  • Tsuji H, Eto T, Sakamoto Y (2011) Synthesis and hydrolytic degradation of substituted poly(DL-Lactic Acid)s. Materials 4(8):1384–98

    Article  Google Scholar 

  • van Oers RFM, Ruimerman R, Tanck E et al (2008) A unified theory for osteonal and hemi-osteonal remodeling. Bone 42(2):250–9

    Article  Google Scholar 

  • von Burkersroda F, Schedl L, Gopferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–31

    Article  Google Scholar 

  • Wang Y, Han X, Pan J et al (2010) An entropy spring model for the Young’s modulus change of biodegradable polymers during biodegradation. J Mech Behav Biomed Mater 3(1):14–21

    Article  Google Scholar 

  • Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed 12(1):21–34

    Article  Google Scholar 

  • Zhang M, Yang Z, Chow LL et al (2003) Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J Pharm Sci 92(10):2040–56

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (NSFC) (Nos. 31300780, 11272091, 11422222, 31470043, 11772093), the Fundamental Research Funds for the Central Universities (No. 2242016R30014) and partially supported by the National 973 Basic Research Program of China (No. 2013CB733800) and ARC (FT140101152). N.M.P. is supported by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer Composites”) and FET Proactive “Neurofibre” Grant No. 732344.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Zhi-Yong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Appendix

Appendix

See Fig. 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Chen, Q., Pugno, N. et al. Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation. Biomech Model Mechanobiol 17, 763–775 (2018). https://doi.org/10.1007/s10237-017-0991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0991-6

Keywords

Navigation