A computational algorithm to simulate disorganization of collagen network in injured articular cartilage

Original Paper
  • 96 Downloads

Abstract

Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage–bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.

Keywords

Articular cartilage Finite element analysis Collagen Disorganization Injury Cartilage mechanics 

Notes

Acknowledgements

CSC—IT Center for Science Ltd., Finland, is acknowledged for providing modeling software and Mikko S. Venäläinen, Ph.D., for technical support.

Author Contributions

PT contributed to the conception and design of the study, acquisition of data, analysis and interpretation of data, drafting and critical revision of the article for intellectual content. PJ took part in the conception and design of the study, analysis and interpretation of data, drafting and critical revision of the article for intellectual content. RKK participated in the conception and design of the study, analysis and interpretation of data, drafting and critical revision of the article for intellectual content.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2017_986_MOESM1_ESM.pdf (373 kb)
Supplementary material 1 (pdf 373 KB)

References

  1. Alexander PG, McCarron JA, Levine MJ et al (2012) An in vivo lapine model for impact-induced injury and osteoarthritic degeneration of articular cartilage. Cartilage 3:323–333.  https://doi.org/10.1177/1947603512447301 CrossRefGoogle Scholar
  2. Bedi A, Kelly N, Baad M et al (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28:372–81.  https://doi.org/10.1016/j.arthro.2011.08.287 CrossRefGoogle Scholar
  3. Bedi A, Kelly NH, Baad M et al (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am 92:1398–408.  https://doi.org/10.2106/JBJS.I.00539 CrossRefGoogle Scholar
  4. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Anat Entwicklungsgesch 76:43–63.  https://doi.org/10.1007/BF02134417 CrossRefGoogle Scholar
  5. Brand RA (2005) Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J 25:82–94Google Scholar
  6. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47(487–504):9571450Google Scholar
  7. Dabiri Y, Li LP (2015) Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint. Int J Numer Method Biomed Eng 31:659–80.  https://doi.org/10.1002/cnm.2713 CrossRefGoogle Scholar
  8. Driessen NJB (2003) Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125:549.  https://doi.org/10.1115/1.1590361 CrossRefGoogle Scholar
  9. Driessen NJB, Bouten CVC, Baaijens FPT (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng 127:329.  https://doi.org/10.1115/1.1865187 CrossRefGoogle Scholar
  10. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7:93–103.  https://doi.org/10.1007/s10237-007-0078-x CrossRefGoogle Scholar
  11. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226:53–64.  https://doi.org/10.1016/j.jtbi.2003.08.004 CrossRefGoogle Scholar
  12. Ferizi U, Rossi I, Lee Y et al (2016) Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn Reson Med.  https://doi.org/10.1002/mrm.26336
  13. Gilbert S, Chen T, Hutchinson ID et al (2014) Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J Biomech 47:2006–2012.  https://doi.org/10.1016/j.jbiomech.2013.11.003 CrossRefGoogle Scholar
  14. Hariton I, de Botton G, Gasser TC, Holzapfel G, a (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6:163–75.  https://doi.org/10.1007/s10237-006-0049-7 CrossRefGoogle Scholar
  15. Hart DJ, Spector TD, Law M, Doyle DV (1991) The relationship between osteoarthritis (Oa) and osteoporosis in the general population: the chingford study. Rheumatology (United Kingdom) 30:55.  https://doi.org/10.1093/rheumatology/XXX.suppl_2.52 Google Scholar
  16. Heinemeier KM, Schjerling P, Heinemeier J et al (2016) Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci Transl Med 8:346ra90.  https://doi.org/10.1126/scitranslmed.aad8335 CrossRefGoogle Scholar
  17. Hosseini SM, Wilson W, Ito K, van Donkelaar CC (2014) A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Osteoarthr Cartil 22:95–103.  https://doi.org/10.1016/j.joca.2013.10.010 CrossRefGoogle Scholar
  18. Julkunen P, Kiviranta P, Wilson W et al (2007) Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech 40:1862–70.  https://doi.org/10.1016/j.jbiomech.2006.07.026 CrossRefGoogle Scholar
  19. Karsdal MA, Madsen SH, Christiansen C et al (2008) Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther 10:R63.  https://doi.org/10.1186/ar2434 CrossRefGoogle Scholar
  20. Klodowski A, Mononen ME, Kulmala JP et al (2016) Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint. Multibody Syst Dyn 37:271–290.  https://doi.org/10.1007/s11044-015-9470-y CrossRefGoogle Scholar
  21. Korhonen RK, Tanska P, Kaartinen SM et al (2015) New concept to restore normal cell responses in osteoarthritic knee joint cartilage. Exerc Sport Sci Rev 43:143–52.  https://doi.org/10.1249/JES.0000000000000051 CrossRefGoogle Scholar
  22. Kääb MJ, Ito K, Clark JM, Nötzli HP (1998) Deformation of articular cartilage collagen structure under static and cyclic loading. J Orthop Res 16:743–51.  https://doi.org/10.1002/jor.1100160617 CrossRefGoogle Scholar
  23. Lanir Y (2015) Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers. Biomech Model Mechanobiol 14:245–266.  https://doi.org/10.1007/s10237-014-0600-x CrossRefGoogle Scholar
  24. Li J, Hua X, Jin Z et al (2014) Biphasic investigation of contact mechanics in natural human hips during activities. Proc Inst Mech Eng Part H J Eng Med 228:556–563.  https://doi.org/10.1177/0954411914537617 CrossRefGoogle Scholar
  25. Li Y, Frank EH, Wang Y et al (2013) Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-\(\alpha \) and interleukin-6, but accentuates degradation above a strain threshold. Osteoarthr Cartil 21:1933–41.  https://doi.org/10.1016/j.joca.2013.08.021 CrossRefGoogle Scholar
  26. Lohmander S (1988) Proteoglycans of joint cartilage. Structure, function, turnover and role as markers of joint disease. Baillieres Clin Rheumatol 2:37–62CrossRefGoogle Scholar
  27. Lyman JR, Chappell JD, Morales TI et al (2012) Response of chondrocytes to local mechanical injury in an ex vivo model. Cartilage 3:58–69.  https://doi.org/10.1177/1947603511421155 CrossRefGoogle Scholar
  28. Maroudas A, Bayliss MT, Uchitel-Kaushansky N et al (1998) Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 350:61–71.  https://doi.org/10.1006/abbi.1997.0492 CrossRefGoogle Scholar
  29. Menzel A (2007) A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects. Biomech Model Mechanobiol 6:303–20.  https://doi.org/10.1007/s10237-006-0061-y CrossRefGoogle Scholar
  30. Miramini S, Smith DW, Zhang L, Gardiner BS (2017) The spatio-temporal mechanical environment of healthy and injured human cartilage during sustained activity and its role in cartilage damage. J Mech Behav Biomed Mater 74:1–10.  https://doi.org/10.1016/j.jmbbm.2017.05.018 CrossRefGoogle Scholar
  31. Mononen ME, Tanska P, Isaksson H, Korhonen RK (2016) A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the osteoarthritis initiative. Sci Rep 6:21415.  https://doi.org/10.1038/srep21415 CrossRefGoogle Scholar
  32. Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4:175–209.  https://doi.org/10.1146/annurev.bioeng.4.110701.120309 CrossRefGoogle Scholar
  33. Myller KAH, Turunen MJ, Honkanen JTJ et al (2016) In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone. Ann Biomed Eng.  https://doi.org/10.1007/s10439-016-1730-3
  34. Nagel T, Ph D, Kelly DJ et al (2013) The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture. Tissue Eng Part A 19:824–833.  https://doi.org/10.1089/ten.TEA.2012.0363 CrossRefGoogle Scholar
  35. Neuman P, Dahlberg LE, Englund M, Struglics A (2017) Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthr Cartil 25:492–498.  https://doi.org/10.1016/j.joca.2016.09.008 CrossRefGoogle Scholar
  36. Oomen PJA, Loerakker S, Van Geemen D et al (2016) Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater 29:161–169.  https://doi.org/10.1016/j.actbio.2015.10.044 CrossRefGoogle Scholar
  37. Quiroga JMP, Wilson W, Ito K, van Donkelaar CC (2017) Relative contribution of articular cartilage’s constitutive components to load support depending on strain rate. Biomech Model Mechanobiol 16:151–158.  https://doi.org/10.1007/s10237-016-0807-0 CrossRefGoogle Scholar
  38. Rachev A, Manoach E, Berry J, Moore JE (2000) A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J Theor Biol 206:429–443.  https://doi.org/10.1006/jtbi.2000.2143 CrossRefGoogle Scholar
  39. Raub CB, Hsu SC, Chan EF et al (2013) Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer. Osteoarthr Cartil 21:860–868.  https://doi.org/10.1016/j.joca.2013.03.014 CrossRefGoogle Scholar
  40. Rolauffs B, Muehleman C, Li J et al (2010) Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum 62:3016–27.  https://doi.org/10.1002/art.27610 CrossRefGoogle Scholar
  41. Saarakkala S, Julkunen P, Kiviranta P et al (2010) Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil 18:73–81.  https://doi.org/10.1016/j.joca.2009.08.003 CrossRefGoogle Scholar
  42. Sasazaki Y, Shore R, Seedhom BB (2006) Deformation and failure of cartilage in the tensile mode. J Anat 208:681–694.  https://doi.org/10.1111/j.1469-7580.2006.00569.x CrossRefGoogle Scholar
  43. Soltz MA, Ateshian GA (2000) A Conewise Linear Elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122:576–86CrossRefGoogle Scholar
  44. Stoop R, van der Kraan PM, Buma P et al (1999) Denaturation of type II collagen in articular cartilage in experimental murine arthritis. Evidence for collagen degradation in both reversible and irreversible cartilage damage. J Pathol 188:329–37.  https://doi.org/10.1002/(SICI)1096-9896(199907)188:3%3c329::AID-PATH371%3e3.0.CO;2-B CrossRefGoogle Scholar
  45. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123:528.  https://doi.org/10.1115/1.1412451 CrossRefGoogle Scholar
  46. Tanska P, Mononen ME, Korhonen RK (2015) A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. J Biomech 48:1397–406.  https://doi.org/10.1016/j.jbiomech.2015.02.043 CrossRefGoogle Scholar
  47. Tanska P, Turunen SM, Han S-K et al (2013) Superficial collagen fibril modulus and pericellular fixed charge density modulate chondrocyte volumetric behaviour in early osteoarthritis. Comput Math Methods Med 2013:164146.  https://doi.org/10.1155/2013/164146 CrossRefGoogle Scholar
  48. Teeple E, Elsaid KA, Fleming BC et al (2008) Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J Orthop Res 26:231–7.  https://doi.org/10.1002/jor.20492 CrossRefGoogle Scholar
  49. van der Voet A (1997) A comparison of finite element codes for the solution of biphasic poroelastic problems. Proc Inst Mech Eng H 211:209–11Google Scholar
  50. Venäläinen MS, Mononen ME, Jurvelin JS et al (2014) Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint—a two-dimensional finite element study. J Biomech Eng 136(12):1–8CrossRefGoogle Scholar
  51. Venäläinen MS, Mononen ME, Salo J et al (2016) Quantitative evaluation of the mechanical risks caused by focal cartilage defects in the knee. Sci Rep 6:37538.  https://doi.org/10.1038/srep37538 CrossRefGoogle Scholar
  52. Virén T, Timonen M, Tyrväinen H et al (2012) Ultrasonic evaluation of acute impact injury of articular cartilage in vitro. Osteoarthr Cartil 20:719–26.  https://doi.org/10.1016/j.joca.2012.03.018 CrossRefGoogle Scholar
  53. Wilson W, Driessen NJB, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil 14:1196–202.  https://doi.org/10.1016/j.joca.2006.05.006 CrossRefGoogle Scholar
  54. Wilson W, van Donkelaar CC, van Rietbergen B et al (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37:357–366.  https://doi.org/10.1016/S0021-9290(03)00267-7 CrossRefGoogle Scholar
  55. Wilson W, van Donkelaar CC, van Rietbergen B et al (2005) Erratum to "Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study" [Journal of Biomechanics 37 (2004) 357–366] and “A fibril-reinforced poroviscoelastic swelling model for articular cartil. J Biomech 38:2138–2140.  https://doi.org/10.1016/j.jbiomech.2005.04.024
  56. Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2005b) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38:1195–204.  https://doi.org/10.1016/j.jbiomech.2004.07.003 CrossRefGoogle Scholar
  57. Yang NH, Nayeb-Hashemi H, Canavan PK, Vaziri A (2010) Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J Orthop Res 28:1539–1547.  https://doi.org/10.1002/jor.21174 CrossRefGoogle Scholar
  58. Zhang L, Miramini S, Smith DW et al (2015) Time evolution of deformation in a human cartilage under cyclic loading. Ann Biomed Eng 43:1166–77.  https://doi.org/10.1007/s10439-014-1164-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  2. 2.Diagnostic Imaging CenterKuopio University HospitalKuopioFinland

Personalised recommendations