Modeling blood flow around a thrombus using a hybrid particle–continuum approach

Abstract

A hybrid, multiscale, particle–continuum numerical method is developed for resolving the interaction of a realistic thrombus geometry with unsteady hemodynamics typically occurring within large arteries. The method is based on a discrete particle/element description of the thrombus, coupled to blood flow using a fictitious domain finite element method. The efficacy of the discrete element approach in representing thrombi with arbitrary aggregate morphology and microstructure is demonstrated. The various features of the method are illustrated using a series of numerical experiments with a model system consisting of an occlusion embedded in a channel. The results from these numerical experiments establish that this approach can resolve the complex macroscale flow structures emanating from unsteady hemodynamics interacting with a thrombus. Simultaneously, it can also resolve micromechanical features, and microscale intra-thrombus flow and perfusion. Using a staggering algorithm, the method can further capture hemodynamics around time-varying thrombus manifolds. This is established using a numerical simulation of lysis of an idealized clot. The hybrid particle–continuum description of thrombus–hemodynamics interaction mechanics, and the unified treatment of macroscale as well as microscale flow and transport, renders significant advantages to the proposed method in enabling further investigations of physiological interest in thrombosis within patient-specific settings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

(photomicrograph courtesy of Dr. T.J. Stalker, University of Pennsylvania)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3(100):9–23

    Google Scholar 

  2. Bajd F, Vidmar J, Blinc A, Serša I (2010) Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis. Thromb Res 126(2):137–143

    Article  Google Scholar 

  3. Bark DL, Para AN, Ku DN (2012) Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol Bioeng 109(10):2642–2650

    Article  Google Scholar 

  4. Barr AH (1981) Superquadrics and angle-preserving transformations. IEEE Comput Graphics Appl 1(1):11–23

    Article  Google Scholar 

  5. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Comput Struct 81(8):491–501

    MathSciNet  Article  Google Scholar 

  6. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    MathSciNet  Article  MATH  Google Scholar 

  7. Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. a stabilized lagrange multiplier method. Comput Methods Appl Mech Eng 199(41):2680–2686

    MathSciNet  Article  MATH  Google Scholar 

  8. Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: Ii. a stabilized Nitsche method. Appl Numer Math 62(4):328–341

    MathSciNet  Article  MATH  Google Scholar 

  9. Cabral V, Leedom LC (1993) Imaging vector fields using line integral convolution. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques, ACM, pp 263–270

  10. Calaminus SDJ, Auger JM, McCarty OJT, Wakelam MJO, Machesky LM, Watson SP (2007) Myosiniia contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J Thromb Haemost 5(10):2136–2145

    Article  Google Scholar 

  11. Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, Rauova L, Lowery TJ, Weisel JW (2014) Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123(10):1596–1603

    Article  Google Scholar 

  12. Colace TV, Muthard RW, Diamond SL (2012) Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow. Arterioscler Thromb Vasc Biol 32(6):1466–1476

    Article  Google Scholar 

  13. Flamm MH, Diamond SL (2012) Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng 40(11):2355–2364

    Article  Google Scholar 

  14. Franca LP, Frey SL (1992) Stabilized finite element methods: ii. the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 99(2–3):209–233

    MathSciNet  Article  MATH  Google Scholar 

  15. Franca LP, Frey SL, Hughes TJR (1992) Stabilized finite element methods: i. Application to the advective-diffusive model. Comput Methods Appl Mech Eng 95(2):253–276

    MathSciNet  Article  MATH  Google Scholar 

  16. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier, Amsterdam (formerly published by Academic Press)

    Google Scholar 

  17. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949

    Article  Google Scholar 

  18. Gay M, Zhang L, Liu WK (2006) Stent modeling using immersed finite element method. Comput Methods Appl Mech Eng 195(33):4358–4370

    MathSciNet  Article  MATH  Google Scholar 

  19. Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426

    MathSciNet  Article  MATH  Google Scholar 

  20. Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(3):317–345

    MathSciNet  Article  MATH  Google Scholar 

  21. Hathcock JJ (2006) Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 26(8):1729–1737

    Article  Google Scholar 

  22. Hellums JD (1994) 1993 whitaker lecture: biorheology in thrombosis research. Ann Biomed Eng 22(5):445–455

    Article  Google Scholar 

  23. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(02):337–377

    MathSciNet  Article  MATH  Google Scholar 

  24. Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI (2015) Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost 13(S1):S72–S81

    Article  Google Scholar 

  25. Jagroop IA, Clatworthy I, Lewin J, Mikhailidis DP (2000) Shape change in human platelets: measurement with a channelyzer and visualisation by electron microscopy. Platelets 11(1):28–32

    Article  Google Scholar 

  26. Kadapa C, Dettmer WG, Perić D (2016) A fictitious domain/distributed lagrange multiplier based fluid-structure interaction scheme with hierarchical b-spline grids. Comput Methods Appl Mech Eng 301:1–27

    MathSciNet  Article  Google Scholar 

  27. Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11):2153–2169

    Article  Google Scholar 

  28. Kindlmann G (2004) Superquadric tensor glyphs. In: Proceedings of the sixth joint Eurographics-IEEE TCVG conference on visualization, Eurographics Association, pp 147–154

  29. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–742

    Article  Google Scholar 

  30. Lam WA, Chaudhuri O, Crow A, Webster KD, Li TD, Kita A, Huang J, Fletcher DA et al (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10(1):61–66

    Article  Google Scholar 

  31. Lee SW, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347

    Article  Google Scholar 

  32. Leiderman K, Fogelson AL (2011) Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math Med Biol 28(1):47–84

    MathSciNet  Article  MATH  Google Scholar 

  33. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  34. Liu WK, Kim DW, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39(3):211–222

    MathSciNet  Article  MATH  Google Scholar 

  35. Mangin P, Ohlmann P, Eckly A, Cazenave JP, Lanza F, Gachet C (2004) The p2y1 receptor plays an essential role in the platelet shape change induced by collagen when txa2 formation is prevented. J Thromb Haemost 2(6):969–977

    Article  Google Scholar 

  36. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    MathSciNet  Article  MATH  Google Scholar 

  37. Mukherjee D, Jani ND, Selvaganesan K, Weng CL, Shadden SC (2016) Computational assessment of the relation between embolism source and embolus distribution to the circle of willis for improved understanding of stroke etiology. J Biomech Eng 138(8):081008

    Article  Google Scholar 

  38. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673

    Article  Google Scholar 

  39. Ono A, Westein E, Hsiao S, Nesbitt WS, Hamilton JR, Schoenwaelder SM, Jackson SP (2008) Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood 112(1):90–99

    Article  Google Scholar 

  40. Peskin CS (2002) The immersed boundary method. Acta numerica 11:479–517

    MathSciNet  Article  MATH  Google Scholar 

  41. Pivkin IV, Richardson PD, Karniadakis G (2006) Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc Natl Acad Sci 103(46):17164–17169

    Article  Google Scholar 

  42. Pöschel T, Schwager T (2005) Computational granular dynamics: models and algorithms. Springer, Berlin

    Google Scholar 

  43. Schroeder WJ, Martin KM (1996) The visualization toolkit-30

  44. Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363

    MathSciNet  Article  MATH  Google Scholar 

  45. Sotiropoulos F, Borazjani I (2009) A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47(3):245–256

    Article  Google Scholar 

  46. Stijnen JMA, De Hart J, Bovendeerd PHM, Van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19(6):835–850

    Article  Google Scholar 

  47. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190(3):411–430

    Article  MATH  Google Scholar 

  48. Tomaiuolo M, Stalker TJ, Welsh JD, Diamond SL, Sinno T, Brass LF (2014) A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124(11):1816–1823

    Article  Google Scholar 

  49. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29):3776–3796

    MathSciNet  Article  MATH  Google Scholar 

  50. Wang W, King MR (2012) Multiscale modeling of platelet adhesion and thrombus growth. Ann Biomed Eng 40(11):2345–2354

    Article  Google Scholar 

  51. Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M (2008) A multiscale model of thrombus development. J R Soc Interface 5(24):705–722

    Article  Google Scholar 

  52. Yamaguchi T, Ishikawa T, Imai Y, Matsuki N, Xenos M, Deng Y, Bluestein D (2010) Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann Biomed Eng 38(3):1225–1235

    Article  Google Scholar 

  53. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193(21):2051–2067

    MathSciNet  Article  MATH  Google Scholar 

  54. Zhou L, Kambhamettu C (1999) Extending superquadrics with exponent functions: modeling and reconstruction. In: 1999 IEEE computer society conference on. computer vision and pattern recognition, vol 2. IEEE, pp 73–78

Download references

Acknowledgements

This research was sponsored by the American Heart Association Award No: 16POST-27500023. The authors gratefully acknowledge the fruitful discussions with Prof. Scott L. Diamond and Dr. Maurizio Tomaiuolo from University of Pennsylvania regarding the topics in this manuscript, which were enabled by a Burroughs Wellcome Fund Collaborative Research Travel Award (Award No: 1016360) to DM. The authors also thank Dr. T.J. Stalker from University of Pennsylvania for sample microscopy image used for illustrating the particle reconstruction of clots. DM and SCS conceptualized this study, DM developed the numerical methods and simulation tools and drafted the manuscript, DM and SCS discussed and designed the simulation experiments for the study, SCS reviewed and edited the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Debanjan Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Shadden, S.C. Modeling blood flow around a thrombus using a hybrid particle–continuum approach. Biomech Model Mechanobiol 17, 645–663 (2018). https://doi.org/10.1007/s10237-017-0983-6

Download citation

Keywords

  • Thrombosis
  • Hemodynamics
  • Discrete element
  • Fictitious domain
  • Multiscale
  • Fluid–structure interaction