Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 6, pp 1911–1923 | Cite as

Biaxial mechanical properties of bovine jugular venous valve leaflet tissues

  • Hsiao-Ying Shadow HuangEmail author
  • Jiaqi Lu
Original Paper


Venous valve incompetence has been implicated in diseases ranging from chronic venous insufficiency (CVI) to intracranial venous hypertension. However, while the mechanical properties of venous valve leaflet tissues are central to CVI biomechanics and mechanobiology, neither stress–strain curves nor tangent moduli have been reported. Here, equibiaxial tensile mechanical tests were conducted to assess the tangent modulus, strength and anisotropy of venous valve leaflet tissues from bovine jugular veins. Valvular tissues were stretched to 60% strain in both the circumferential and radial directions, and leaflet tissue stress–strain curves were generated for proximal and distal valves (i.e., valves closest and furthest from the right heart, respectively). Toward linking mechanical properties to leaflet microstructure and composition, Masson’s trichrome and Verhoeff–Van Gieson staining and collagen assays were conducted. Results showed: (1) Proximal bovine jugular vein venous valves tended to be bicuspid (i.e., have two leaflets), while distal valves tended to be tricuspid; (2) leaflet tissues from proximal valves exhibited approximately threefold higher peak tangent moduli in the circumferential direction than in the orthogonal radial direction (i.e., proximal valve leaflet tissues were anisotropic; \(p<0.01\)); (3) individual leaflets excised from the same valve apparatus appeared to exhibit different mechanical properties (i.e., intra-valve variability); and (4) leaflets from distal valves exhibited a trend of higher soluble collagen concentrations than proximal ones (i.e., inter-valve variability). To the best of the authors’ knowledge, this is the first study reporting biaxial mechanical properties of venous valve leaflet tissues. These results provide a baseline for studying venous valve incompetence at the tissue level and a quantitative basis for prosthetic venous valve design.


Anisotropy Tissue biomechanics Biaxial testing Chronic venous insufficiency 



The authors gratefully acknowledge Mr. George C. Engelmayr, Sr., for his assistance in sourcing bovine jugular vein tissues and Adam Benson for performing collagen assays on lyophilized valve tissues. This work was supported by NSF CBET-1553430.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ackroyd JS, Pattison M, Browse NL (1985) A study of the mechanical properties of fresh and preserved human femoral vein wall and valve cusps. Br J Surg 72:117–119CrossRefGoogle Scholar
  2. Aldous IG, Veres SP, Jahangir A, Lee JM (2009) Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am J Physiol Heart Circ Physiol 296:H1898–1906. doi: 10.1152/ajpheart.01173.2008 CrossRefGoogle Scholar
  3. Bazigou E, Lyons OT, Smith A, Venn GE, Cope C, Brown NA, Makinen T (2011) Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J Clin Investig 121:2984–2992. doi: 10.1172/JCI58050 CrossRefGoogle Scholar
  4. Bazigou E, Makinen T (2013) Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci 70:1055–1066. doi: 10.1007/s00018-012-1110-6 CrossRefGoogle Scholar
  5. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D (2005) The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol 15:175–184. doi: 10.1016/j.annepidem.2004.05.015 CrossRefGoogle Scholar
  6. Bergan JJ (2008) Venous valve incompetence: the first culprit in the pathophysiology of chronic venous insufficiency. Medicographia 30:87–94Google Scholar
  7. Bernardini E, De Rango P, Piccioli R, Bisacci C, Pagliuca V, Genovese G, Bisacci R (2010) Development of primary superficial venous insufficiency: the ascending theory. Observational and hemodynamic data from a 9-year experience. Ann Vasc Surg 24:709–720. doi: 10.1016/j.avsg.2010.01.011 CrossRefGoogle Scholar
  8. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J Biomech Eng 122:23–30CrossRefGoogle Scholar
  9. Brountzos E et al (2003) Remodeling of suspended small intestinal submucosa venous valve: an experimental study in sheep to assess the host cells’ origin. J Vasc Interv Radiol 14:349–356. doi: 10.1097/01.Rvi.0000058410.01661.62 CrossRefGoogle Scholar
  10. Buchanan RM, Sacks MS (2013) Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol. doi: 10.1007/s10237-013-0536-6 Google Scholar
  11. Buchtemann AS, Steins A, Volkert B, Hahn M, Klyscz T, Junger M (1999) The effect of compression therapy on venous haemodynamics in pregnant women. Br J Obstetri Gynaecol 106:563–569CrossRefGoogle Scholar
  12. Buescher CD, Nachiappan B, Brumbaugh JM, Hoo KA, Janssen HF (2005) Experimental studies of the effects of abnormal venous valves on fluid flow. Biotechnol Prog 21:938–945. doi: 10.1021/bp049835u CrossRefGoogle Scholar
  13. Buxton GA, Clarke N (2006) Computational phlebology: the simulation of a vein valve. J Biol Phys 32:507–521. doi: 10.1007/s10867-007-9033-4 CrossRefGoogle Scholar
  14. Carrel T (2004) Bovine valved jugular vein (Contegra\(^{{\rm TM}}\)) to reconstruct the right ventricular outflow tract. Expert Rev Med Devices 1:11–19. doi: 10.1586/17434440.1.1.11 CrossRefGoogle Scholar
  15. Chauveau M, Gelade P, Cros F (2011) The venous return simulator: comparison of simulated with measured ambulatory venous pressure in normal subjects and in venous valve incompetence. VASA Z Gefasskrankh 40:205–217. doi: 10.1024/0301-1526/a000095 CrossRefGoogle Scholar
  16. Chen HY, Berwick Z, Krieger J, Chambers S, Lurie F, Kassab GS (2014) Biomechanical comparison between mono-, bi-, and tricuspid valve architectures. J Vasc Surg Venous Lymphat Disord 2:188–193. doi: 10.1016/j.jvsv.2013.08.004 CrossRefGoogle Scholar
  17. Corno AF, Hurni M, Griffin H, Jeanrenaud X, von Segesser LK (2001) Glutaraldehyde-fixed bovine jugular vein as a substitute for the pulmonary valve in the Ross operation. J Thorac Cardiovasc Surg 122:493–494. doi: 10.1067/mtc.2001.114780 CrossRefGoogle Scholar
  18. Davis FM, De Vita R (2012) A nonlinear constitutive model for stress relaxation in ligaments and tendons. Ann Biomed Eng 40:2541–2550. doi: 10.1007/s10439-012-0596-2 CrossRefGoogle Scholar
  19. de Borst GJ, Moll FL (2012) Percutaneous venous valve designs for treatment of deep venous insufficiency. J Endovasc Ther 19:291–302. doi: 10.1583/11-3766R.1 CrossRefGoogle Scholar
  20. de Borst GJ, Teijink JA, Patterson M, Quijano TC, Moll FL (2003) A percutaneous approach to deep venous valve insufficiency with a new self-expanding venous frame valve. J Endovasc Ther 10:341–349. doi: 10.1177/152660280301000227 Google Scholar
  21. DeLaria GA, Phifer T, Roy J, Tu R, Thyagarajan K, Quijano RC (1993) Hemodynamic evaluation of a bioprosthetic venous prosthesis. J Vasc Surg 18:577–584 (discussion 584-576)CrossRefGoogle Scholar
  22. Edwards JE, Edwards EA (1940) The saphenous valves in varicose veins. Am Heart J 19:338CrossRefGoogle Scholar
  23. Engelmayr GC Jr, Rabkin E, Sutherland FW, Schoen FJ, MJ E Jr, Sacks MS (2005) The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26:175–187CrossRefGoogle Scholar
  24. Fan CM (2005) Venous pathophysiology. Semin Intervent Radiol 22:157–161. doi: 10.1055/s-2005-921949 CrossRefGoogle Scholar
  25. Franklin K (1927) Valves in veins: an historical survey. Proc R Soc Med 21:1–33Google Scholar
  26. Franklin K (1929) Valves in veins: further observations. J Anat 64:67–69Google Scholar
  27. Glynn JJ, Jones CM, Anderson DEJ, Pavcnik D, Hinds MT (2016) In vivo assessment of two endothelialization approaches on bioprosthetic valves for the treatment of chronic deep venous insufficiency. J Biomed Mater Res B 104:1610–1621. doi: 10.1002/jbm.b.33507 CrossRefGoogle Scholar
  28. Gottlob R, May R (1986) Venous valves: morphology, function, radiology, surgery. Springer-Verlag, Wien, New YorkCrossRefGoogle Scholar
  29. Hilbert SL, Sword LC, Batchelder KF, Barrick MK, Ferrans VJ (1996) Simultaneous assessment of bioprosthetic heart valve biomechanical properties and collagen crimp length. J Biomed Mater Res 31:503–509. doi: 10.1002/(Sici)1097-4636(199608)31:4<503::Aid-Jbm10>3.0.Co;2-H
  30. Hill R, Schmidt S, Evancho M, Hunter T, Hillegass D, Sharp W (1985) Development of a prosthetic venous valve. J Biomed Mater Res 19:827–832. doi: 10.1002/jbm.820190708 CrossRefGoogle Scholar
  31. Huang H-YS, Balhouse BN, Huang S (2012) Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering. Proc Inst Mech Eng Part H 226:868–876. doi: 10.1177/0954411912455004 CrossRefGoogle Scholar
  32. Huang H-YS, Huang S, Frazier CP, Prim P, Harrysson O (2014) Directional mechanical property of porcine skin tissues. J Mech Med Biol. doi: 10.1142/S0219519414500699 Google Scholar
  33. Huang H-YS, Liao J, Sacks MS (2007) In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J Biomech Eng Trans ASME 129:880–889. doi: 10.1115/1.2801670 CrossRefGoogle Scholar
  34. Huang S, Huang H-YS (2015) Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: effects of collagenase concentration and equibiaxial strain-state. Proc Inst Mech Eng Part H 229:721–731. doi: 10.1177/0954411915604336 CrossRefGoogle Scholar
  35. James KV, Lohr JM, Deshmukh RM, Cranley JJ (1996) Venous thrombotic complications of pregnancy. Cardiovasc Surg 4:777–782CrossRefGoogle Scholar
  36. Jones CM, Hinds MT, Pavcnik D (2012) Retention of an autologous endothelial layer on a bioprosthetic valve for the treatment of chronic deep venous insufficiency. J Vasc Interv Radiol 23:697–703. doi: 10.1016/j.jvir.2012.01.062 CrossRefGoogle Scholar
  37. Kampmeier OF, Birch CLF (1927) The origin and development of the venous valves, with particular reference to the saphenous district. Am J Anat 38:451–499. doi: 10.1002/aja.1000380306 CrossRefGoogle Scholar
  38. Karino T, Motomiya M (1984) Flow through a venous valve and its implication for thrombus formation. Thrombosis Res 36:245–257CrossRefGoogle Scholar
  39. Kehl D, Weber B, Hoerstrup SP (2016) Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc Pathol 25:300–305. doi: 10.1016/j.carpath.2016.03.001 CrossRefGoogle Scholar
  40. Kistner RL (1968) Surgical repair of a venous valve. Straub Clin Proc 34:41–43Google Scholar
  41. Kuna VK et al (2015) Successful tissue engineering of competent allogeneic venous valves. J Vasc Surg Venous Lymphat Disord 3:421–430. doi: 10.1016/j.jvsv.2014.12.002 CrossRefGoogle Scholar
  42. Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074. doi: 10.1016/j.biomaterials.2007.11.007 CrossRefGoogle Scholar
  43. Lochner P, Nedelmann M, Kaps M, Stolz E (2014) Jugular valve incompetence in transient global amnesia. A problem revisited. J Neuroimaging 24:479–483. doi: 10.1111/jon.12042 CrossRefGoogle Scholar
  44. Lurie F, Kistner RL, Eklof B, Kessler D (2003) Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vasc Surg 38:955–961. doi: 10.1016/S0741 CrossRefGoogle Scholar
  45. Masoumi N, Jean A, Zugates JT, Johnson KL, Engelmayr GC (2013) Laser microfabricated poly (glycerol sebacate) scaffolds for heart valve tissue engineering. J Biomed Mater Res Part A 101:104–114. doi: 10.1002/Jbm.A.34305 CrossRefGoogle Scholar
  46. Masoumi N, Johnson KL, Howell MC, Engelmayr GC Jr (2013) Valvular interstitial cell seeded poly (glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater 9:5974–5988. doi: 10.1016/j.actbio.2013.01.001 CrossRefGoogle Scholar
  47. May-Newman K, Lam C, Yin FCP (2009) A hyperelastic constitutive law for aortic valve tissue. J Biomech Eng. doi: 10.1115/1.3127261 Google Scholar
  48. McElhinney DB, Hennesen JT (2013) The Melody\(\textregistered \) valve and Ensemble\(\textregistered \) delivery system for transcatheter pulmonary valve replacement. Ann NY Acad Sci 1291:77–85. doi: 10.1111/nyas.12194 CrossRefGoogle Scholar
  49. Moore HM, Gohel M, Davies AH (2011) Number and location of venous valves within the popliteal and femoral veins: a review of the literature. J Anat 219:439–443. doi: 10.1111/j.1469-7580.2011.01409.x
  50. Moriyama M, Kubota S, Tashiro H, Tonami H (2011) Evaluation of prosthetic venous valves, fabricated by electrospinning, for percutaneous treatment of chronic venous insufficiency. J Artif Organs 14:294–300. doi: 10.1007/s10047-011-0588-2 CrossRefGoogle Scholar
  51. Munger SJ, Geng X, Srinivasan RS, Witte MH, Paul DL, Simon AM (2016) Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol 412:173–190. doi: 10.1016/j.ydbio.2016.02.033 CrossRefGoogle Scholar
  52. Munger SJ, Kanady JD, Simon AM (2013) Absence of venous valves in mice lacking Connexin37. Dev Biol 373:338–348. doi: 10.1016/j.ydbio.2012.10.032 CrossRefGoogle Scholar
  53. Narracott AJ, Zervides C, Diaz V, Rafiroiu D, Lawford PV, Hose DR (2010) Analysis of a mechanical heart valve prosthesis and a native venous valve: two distinct applications of FSI to biomedical applications. Int J Numer Methods Biomed Eng 26:421–434CrossRefzbMATHGoogle Scholar
  54. Nedelmann M, Kaps M, Mueller-Forell W (2009) Venous obstruction and jugular valve insufficiency in idiopathic intracranial hypertension. J Neurol 256:964–969. doi: 10.1007/s00415-009-5056-z CrossRefGoogle Scholar
  55. Noishiki Y et al (1993) Development and evaluation of a pliable biological valved conduit. 1. Preparation, biochemical-properties, and histological-findings. Int J Artif Organs 16:192–198Google Scholar
  56. Padberg FT Jr, Johnston MV, Sisto SA (2004) Structured exercise improves calf muscle pump function in chronic venous insufficiency: a randomized trial. J Vasc Surg 39:79–87. doi: 10.1016/j.jvs.2003.09.036 CrossRefGoogle Scholar
  57. Pavcnik D, Uchida BT, Timmermans H, Corless CL, Keller FS, Rosch J (2000) Aortic and venous valve for percutaneous insertion. Minim Invasive Ther Allied Technol 9:287–292. doi: 10.1080/13645700009169659 CrossRefGoogle Scholar
  58. Pavcnik D et al (2002) Percutaneous bioprosthetic venous valve: a long-term study in sheep. J Vasc Surg 35:598–602. doi: 10.1067/mva.2002.118825 CrossRefGoogle Scholar
  59. Qui Y, Quijano RC, Wang SK, Hwang NH (1995) Fluid dynamics of venous valve closure. Ann Biomed Eng 23:750–759CrossRefGoogle Scholar
  60. Qureshi MI et al (2015) A study to evaluate patterns of superficial venous reflux in patients with primary chronic venous disease. Phlebology 30:455–461. doi: 10.1177/0268355514536384 CrossRefGoogle Scholar
  61. Reeves TR, Cezeaux JL, Sackman JE, Cassada DC, Freeman MB, Stevens SL, Goldman MH (1997) Mechanical characteristics of lyophilized human saphenous vein valves. J Vasc Surg 26:823–828CrossRefGoogle Scholar
  62. Rittgers SE, Oberdier MT, Pottala S (2007) Physiologically-based testing system for the mechanical characterization of prosthetic vein valves. Biomed Eng Online 6:29. doi: 10.1186/1475-925X-6-29 CrossRefGoogle Scholar
  63. Sabine A et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22:430–445. doi: 10.1016/j.devcel.2011.12.020
  64. Shen MR et al (2014) Biocompatibility evaluation of tissue-engineered valved venous conduit by reseeding autologous bone marrow-derived endothelial progenitor cells and multipotent adult progenitor cells into heterogeneous decellularized venous matrix. J Tissue Eng Regen Med. doi: 10.1002/term.1877 Google Scholar
  65. Sparey C, Haddad N, Sissons G, Rosser S, de Cossart L (1999) The effect of pregnancy on the lower-limb venous system of women with varicose veins. Eur J Vasc Endovasc Surg 18:294–299. doi: 10.1053/ejvs.1999.0870 CrossRefGoogle Scholar
  66. Stella JA, Liao J, Sacks MS (2007) Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech 40:3169–3177. doi: 10.1016/j.jbiomech.2007.04.001 CrossRefGoogle Scholar
  67. Sun W, Sacks M, Fulchiero G, Lovekamp J, Vyavahare N, Scott M (2004) Response of heterograft heart valve biomaterials to moderate cyclic loading. J Biomed Mater Res A 69:658–669. doi: 10.1002/jbm.a.30031 CrossRefGoogle Scholar
  68. Teebken OE, Puschmann C, Aper T, Haverich A, Mertsching H (2003) Tissue-engineered bioprosthetic venous valve: a long-term study in sheep. Eur J Vasc Endovasc Surg 25:305–312. doi: 10.1053/ejvs.2002.1873 CrossRefGoogle Scholar
  69. Teebken OE, Puschmann C, Breitenbach I, Rohde B, Burgwitz K, Haverich A (2009) Preclinical development of tissue-engineered vein valves and venous substitutes using re-endothelialised human vein matrix. Eur J Vasc Endovasc Surg 37:92–102. doi: 10.1016/j.ejvs.2008.10.012 CrossRefGoogle Scholar
  70. Tripathi R, Sieunarine K, Abbas M, Durrani N (2004) Deep venous valve reconstruction for non-healing leg ulcers: techniques and results. ANZ J Surg 74:34–39CrossRefGoogle Scholar
  71. Tseng H, Grande-Allen KJ (2011) Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater 7:2101–2108. doi: 10.1016/j.actbio.2011.01.022 CrossRefGoogle Scholar
  72. van Geemen D, Driessen-Mol A, Grootzwagers LGM, Soekhradj-Soechit RS, Vis PWR, Baaijens FPT, Bouten CVC (2012) Variation in tissue outcome of ovine and human engineered heart valve constructs: relevance for tissue engineering. Regen Med 7:59–70. doi: 10.2217/rme.11.100 CrossRefGoogle Scholar
  73. Vogel D, Walsh ME, Chen JT, Comerota AJ (2012) Comparison of vein valve function following pharmacomechanical thrombolysis versus simple catheter-directed thrombolysis for iliofemoral deep vein thrombosis. J Vasc Surg 56:1351–1354. doi: 10.1016/j.jvs.2012.02.053 CrossRefGoogle Scholar
  74. Weber B et al (2014) Living-engineered valves for transcatheter venous valve repair. Tissue Eng Part C Methods. doi: 10.1089/ten.TEC.2013.0187 Google Scholar
  75. Wen Y et al (2012) Construction of tissue-engineered venous valves in vitro using two types of progenitor cells and decellularized scaffolds category: original article. Open Tissue Eng Regen Med J 5:9–16. doi: 10.2174/1875043501205010009 CrossRefGoogle Scholar
  76. Yuan JM et al (2013) Functional analysis in vivo of engineered valved venous conduit with decellularized matrix and two bone marrow-derived progenitors in sheep. J Tissue Eng Regen Med. doi: 10.1002/term.1748 Google Scholar
  77. Zervides C, Giannoukas AD (2012) Historical overview of venous valve prostheses for the treatment of deep venous valve insufficiency. J Endovasc Ther 19:281–290. doi: 10.1583/11-3594MR.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations