Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 5, pp 1709–1727 | Cite as

Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter

Original Paper

Abstract

Reliable prediction and diagnosis of concussion is important for its effective clinical management. Previous model-based studies largely employ peak responses from a single element in a pre-selected anatomical region of interest (ROI) and utilize a single training dataset for injury prediction. A more systematic and rigorous approach is necessary to scrutinize the entire white matter (WM) ROIs as well as ROI-constrained neural tracts. To this end, we evaluated injury prediction performances of the 50 deep WM regions using predictor variables based on strains obtained from simulating the 58 reconstructed American National Football League head impacts. To objectively evaluate performance, repeated random subsampling was employed to split the impacts into independent training and testing datasets (39 and 19 cases, respectively, with 100 trials). Univariate logistic regressions were conducted based on training datasets to compute the area under the receiver operating characteristic curve (AUC), while accuracy, sensitivity, and specificity were reported based on testing datasets. Two tract-wise injury susceptibilities were identified as the best overall via pair-wise permutation test. They had comparable AUC, accuracy, and sensitivity, with the highest values occurring in superior longitudinal fasciculus (SLF; 0.867–0.879, 84.4–85.2, and 84.1–84.6%, respectively). Using metrics based on WM fiber strain, the most vulnerable ROIs included genu of corpus callosum, cerebral peduncle, and uncinate fasciculus, while genu and main body of corpus callosum, and SLF were among the most vulnerable tracts. Even for one un-concussed athlete, injury susceptibility of the cingulum (hippocampus) right was elevated. These findings highlight the unique injury discriminatory potentials of computational models and may provide important insight into how best to incorporate WM structural anisotropy for investigation of brain injury.

Keywords

Concussion Deep white matter Fiber strain Injury susceptibility Tractography 

References

  1. Allison Ma, Kang YS, Bolte JH et al (2014) Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med Sci Sports Exerc 46:115–123. doi:10.1249/MSS.0b013e3182a32d0d CrossRefGoogle Scholar
  2. Anderson AE, Ellis BJ, Weiss Ja (2007) Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Eng 10:171–184. doi:10.1080/10255840601160484 CrossRefGoogle Scholar
  3. Andersson J, Jenkinson M, Smith S (2007) Non-linear registration, aka spatial normalisation. Technical Report TR07JA2, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, Oxford University, Oxford, UK. http://www.fmrib.ox.ac.uk/analysis/techrep
  4. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection *. Stat Surv 4:40–79. doi:10.1214/09-SS054 MathSciNetCrossRefMATHGoogle Scholar
  5. Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng 122:615–622. doi:10.1115/1.1324667 CrossRefGoogle Scholar
  6. Bandak FA, Eppinger RH (1994) A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations. In: Proceedings, 38th Stapp Car Crash Conference, SAE paper no. 942215, pp 145–163Google Scholar
  7. Bazarian JJ, Zhu T, Zhong J et al (2014) Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts. PLoS One 9:e94734. doi:10.1371/journal.pone.0094734 CrossRefGoogle Scholar
  8. Beckwith JG, Greenwald RM, Chu JJ (2012) Measuring head kinematics in football: correlation between the head impact telemetry system and hybrid III headform. Ann Biomed Eng 40:237–248. doi:10.1007/s10439-011-0422-2 CrossRefGoogle Scholar
  9. Bigler ED, Maxwell WL (2012) Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav 6:108–136. doi:10.1007/s11682-011-9145-0 CrossRefGoogle Scholar
  10. CDC (2015) Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitationGoogle Scholar
  11. Chappell MH, Ulug AM, Zhang L et al (2006) Distribution of microstructural damage in the brains of professional boxers: a diffusion MRI study. J Magn Reson Imaging 24:537–542. doi:10.1002/jmri.20656 CrossRefGoogle Scholar
  12. Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276. doi:10.3233/BIR-2010-0576 Google Scholar
  13. Chatelin S, Deck C, Renard F et al (2011) Computation of axonal elongation in head trauma finite element simulation. J Mech Behav Biomed Mater 4:1905–1919. doi:10.1016/j.jmbbm.2011.06.007 CrossRefGoogle Scholar
  14. Cubon VA, Putukian M, Boyer C, Dettwiler A (2011) A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J Neurotrauma 28:189–201. doi:10.1089/neu.2010.1430 CrossRefGoogle Scholar
  15. Cullen DK, LaPlaca MC (2006) Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J Neurotrauma 23:1304–1319. doi:10.1089/neu.2006.23.1304 CrossRefGoogle Scholar
  16. Donnelly BR, Morgan RM, Eppinger RH (1983) Durability, repeatability and reproducibility of the NHTSA side impact dummy. Stapp Car Crash J 27:299–310Google Scholar
  17. Elkin BS, Morrison B (2007) Region-specific tolerance criteria for the living brain. Stapp Car Crash J 51:127–138Google Scholar
  18. Fahlstedt M, Depreitere B, Halldin P et al (2015) Correlation between injury pattern and finite element analysis in biomechanical reconstructions of traumatic brain injuries. J Biomech 48:1331–1335. doi:10.1016/j.jbiomech.2015.02.057 CrossRefGoogle Scholar
  19. Fijalkowski RJ, Yoganandan N, Zhang J, Pintar FA (2009) A finite element model of region-specific response for mild diffuse brain injury. Stapp Car Crash J 53:193–213Google Scholar
  20. Gardner A, Kay-Lambkin F, Stanwell P et al (2012) A systematic review of diffusion tensor imaging findings in sports-related concussion. J Neurotrauma 29:2521–2538. doi:10.1089/neu.2012.2628 CrossRefGoogle Scholar
  21. Garimella HT, Kraft RH (2016) Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int J Numer Method Biomed Eng 02823:26–35. doi:10.1002/cnm.2823 Google Scholar
  22. Giordano C, Kleiven S (2014a) Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J 58:29–61Google Scholar
  23. Giordano C, Kleiven S (2014b) Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J R Soc Interface 11:1–14Google Scholar
  24. Hardy WN, Foster CD, Mason MJ et al (2001) Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J 45:337–368Google Scholar
  25. Hardy WN, Mason MJ, Foster CD et al (2007) A study of the response of the human cadaver head to impact. Stapp Car Crash J 51:17–80Google Scholar
  26. Hernandez F, Wu LC, Yip MC et al (2014) Six degree of freedom measurements of human mild traumatic brain injury. Ann Biomed Eng 43:1918–1934. doi:10.1007/s10439-014-1212-4 CrossRefGoogle Scholar
  27. Ji S, Ghadyani H, Bolander RP et al (2014a) Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann Biomed Eng 42:11–24. doi:10.1007/s10439-013-0907-2 CrossRefGoogle Scholar
  28. Ji S, Zhao W (2015) A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann Biomed Eng 43:1877–1895. doi:10.1007/s10439-014-1193-3 CrossRefGoogle Scholar
  29. Ji S, Zhao W, Ford JC et al (2015) Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J Neurotrauma 32:441–454. doi:10.1089/neu.2013.3268 CrossRefGoogle Scholar
  30. Ji S, Zhao W, Li Z, McAllister TW (2014b) Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation. Biomech Model Mechanobiol 13:1121–1136. doi:10.1007/s10237-014-0562-z CrossRefGoogle Scholar
  31. Kimpara H, Iwamoto M (2012) Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann Biomed Eng 40:114–126. doi:10.1007/s10439-011-0414-2 CrossRefGoogle Scholar
  32. Kimpara H, Nakahira Y, Iwamoto M et al (2006) Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model. Stapp Car Crash J 50:509–544Google Scholar
  33. King AI, Yang KH, Zhang L et al (2003) Is head injury caused by linear or angular acceleration? In: IRCOBI Conference. Lisbon, pp 1–12Google Scholar
  34. Kleiven S (2006) Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int J Crashworthiness 11:65–79. doi:10.1533/ijcr.2005.0384 CrossRefGoogle Scholar
  35. Kleiven S (2007) Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114Google Scholar
  36. Kraft RH, McKee PJ, Dagro AM, Grafton ST (2012) Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput Biol 8:e1002619. doi:10.1371/journal.pcbi.1002619 MathSciNetCrossRefGoogle Scholar
  37. Kraus MF, Susmaras T, Caughlin BP et al (2007) White matter integrity and cognition in chronic traumatic brain injury?: a diffusion tensor imaging study. Brain 2508–2519. doi:10.1093/brain/awm216
  38. Mao H, Zhang L, Jiang B et al (2013) Development of a finite element human head model partially validated with thirty five experimental cases. J Biomech Eng 135:111002–111015. doi:10.1115/1.4025101 CrossRefGoogle Scholar
  39. Marjoux D, Baumgartner D, Deck C, Willinger R (2008) Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid Anal Prev 40:1135–1148. doi:10.1016/j.aap.2007.12.006 CrossRefGoogle Scholar
  40. McAllister TW, Flashman La, Maerlender a et al (2012) Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes. Neurology 78:1777–1784. doi:10.1212/WNL.0b013e3182582fe7 CrossRefGoogle Scholar
  41. McAllister TW, Ford JC, Flashman LA et al (2014) Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology 82:63–69. doi:10.1212/01.wnl.0000438220.16190.42 CrossRefGoogle Scholar
  42. Messé A, Caplain S, Paradot G et al (2011) Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp 32:999–1011. doi:10.1002/hbm.21092 CrossRefGoogle Scholar
  43. Miller LE, Urban JE, Stitzel JD (2016) Development and validation of an atlas-based finite element brain model model. Biomech Model. doi:10.1007/s10237-015-0754-1
  44. Mori S, Oishi K, Jiang H et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582. doi:10.1016/j.neuroimage.2007.12.035 CrossRefGoogle Scholar
  45. Newman J, Shewchenko N, Welbourne E (2000) A proposed new biomechanical head injury assessment function-the maximum power index. Stapp Car Crash J 44:215–247Google Scholar
  46. Newman JA, Beusenberg MC, Shewchenko N et al (2005) Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J Biomech 38:1469–1481. doi:10.1016/j.jbiomech.2004.06.025 CrossRefGoogle Scholar
  47. Niogi SN, Mukherjee P, Ghajar J et al (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973. doi:10.3174/ajnr.A0970 CrossRefGoogle Scholar
  48. (NRC) I of M (IOM) and NRC (2014) Sports-related concussions in youth: improving the science, changing the culture. Washington, DCGoogle Scholar
  49. Pellman EJ, Viano DC, Tucker A, Casson IR (2003) Concussion in professional football: location and direction of helmet impacts—part 2. Neurosurgery 53:1328–1341. doi:10.1227/01.NEU.0000093499.20604.21 CrossRefGoogle Scholar
  50. Rice JA (2006) Mathematical statistics and data analysis, vol 3. Duxbury Advanced, BelmontGoogle Scholar
  51. Sabet AA, Christoforou E, Zatlin B et al (2008) Deformation of the human brain induced by mild angular head acceleration. J Biomech 41:307–315. doi:10.1016/j.jbiomech.2007.09.016 CrossRefGoogle Scholar
  52. Sahoo D, Deck C, Willinger R (2014) Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J Mech Behav Biomed Mater 33:24–42. doi:10.1016/j.jmbbm.2013.08.022 CrossRefGoogle Scholar
  53. Sahoo D, Deck C, Willinger R (2016) Brain injury tolerance limit based on computation of axonal strain. Accid Anal Prev 92:53–70. doi:10.1016/j.aap.2016.03.013 CrossRefGoogle Scholar
  54. Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192. doi:10.1007/s11682-012-9156-5 CrossRefGoogle Scholar
  55. Sullivan S, Eucker SA, Gabrieli D et al (2014) White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0643-z
  56. Takhounts EG, Craig MJ, Moorhouse K et al (2013) Development of brain injury criteria (Br IC). Stapp Car Crash J 57:243–266Google Scholar
  57. Takhounts EG, Ridella SA, Tannous RE et al (2008) Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J 52:1–31Google Scholar
  58. Takhounts EGE, Eppinger RRH, Campbell JQ et al (2003) On the development of the SIMon finite element head model. Stapp Car Crash J 47:107–133Google Scholar
  59. Talavage TM, Nauman E, Breedlove EL et al (2014) Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 31:327–338. doi:10.1089/neu.2010.1512 CrossRefGoogle Scholar
  60. Viano DC, Casson IR, Pellman EJ et al (2005) Concussion in professional football: brain responses by finite element analysis—part 9. doi:10.1227/01.NEU.0000186950.54075.3B
  61. Weaver AA, Danelson KA, Stitzel JD (2012) Modeling brain injury response for rotational velocities of varying directions and magnitudes. Ann Biomed Eng 40:2005–2018. doi:10.1007/s10439-012-0553-0 CrossRefGoogle Scholar
  62. Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39:269. doi:10.2307/3001968 CrossRefGoogle Scholar
  63. Wright RM, Post A, Hoshizaki B, Ramesh KT (2013) A multiscale computational approach to estimating axonal damage under inertial loading of the head. J Neurotrauma 30:102–118. doi:10.1089/neu.2012.2418 CrossRefGoogle Scholar
  64. Wright RM, Ramesh KT (2012) An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol 11:245–260. doi:10.1007/s10237-011-0307-1 CrossRefGoogle Scholar
  65. Xiong K, Zhu Y, Zhang Y et al (2014) White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident. Brain Res 1591:86–92. doi:10.1016/j.brainres.2014.10.030 CrossRefGoogle Scholar
  66. Yang K, Mao H, Wagner C et al (2011) Modeling of the brain for injury prevention. In: Bilston LE (ed) Studies in mechanobiology, tissue engineering and biomaterials. Springer-Verlag, Berlin, pp 69–120Google Scholar
  67. Zhang K, Johnson B, Pennell D et al (2010a) Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI and DTI study. Exp Brain Res 204:57–70. doi:10.1007/s00221-010-2294-3 CrossRefGoogle Scholar
  68. Zhang L, Yang KH, King AI (2004) A proposed injury threshold for mild traumatic brain injury. J Biomech Eng 10(1115/1):1691446. doi:10.1115/1.1691446 Google Scholar
  69. Zhang Y, Zhang J, Oishi K et al (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52:1289–1301. doi:10.1016/j.neuroimage.2010.05.049 CrossRefGoogle Scholar
  70. Zhao W, Ji S (2015) Parametric investigation of regional brain strain responses via a pre-computed atlas. IRCOBI Conference. Lyon, pp 208–220Google Scholar
  71. Zhao W, Ji S (2016) Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles. Biomech Model Mechanobiol. doi:10.1007/s10237-016-0829-7
  72. Zhao W, Ford JC, Flashman LA et al (2016) White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J Neurotrauma 33:1834–1847. doi:10.1089/neu.2015.4239 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wei Zhao
    • 1
  • Yunliang Cai
    • 1
  • Zhigang Li
    • 2
  • Songbai Ji
    • 1
    • 3
    • 4
  1. 1.Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Department of Biomedical Data Science, Geisel School of MedicineDartmouth CollegeLebanonUSA
  3. 3.Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations