Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1459–1473 | Cite as

Affine kinematics in planar fibrous connective tissues: an experimental investigation

  • C. Jayyosi
  • J.-S. Affagard
  • G. Ducourthial
  • C. Bonod-Bidaud
  • B. Lynch
  • S. Bancelin
  • F. Ruggiero
  • M.-C. Schanne-Klein
  • J.-M. Allain
  • K. Bruyère-GarnierEmail author
  • M. Coret
Original Paper

Abstract

The affine transformation hypothesis is usually adopted in order to link the tissue scale with the fibers scale in structural constitutive models of fibrous tissues. Thanks to the recent advances in imaging techniques, such as multiphoton microscopy, the microstructural behavior and kinematics of fibrous tissues can now be monitored at different stretching within the same sample. Therefore, the validity of the affine hypothesis can be investigated. In this paper, the fiber reorientation predicted by the affine assumption is compared to experimental data obtained during mechanical tests on skin and liver capsule coupled with microstructural imaging using multiphoton microscopy. The values of local strains and the collagen fibers orientation measured at increasing loading levels are used to compute a theoretical estimation of the affine reorientation of collagen fibers. The experimentally measured reorientation of collagen fibers during loading could not be successfully reproduced with this simple affine model. It suggests that other phenomena occur in the stretching process of planar fibrous connective tissues, which should be included in structural constitutive modeling approaches.

Keywords

Affine transformation Constitutive modeling Fibrous connective tissue Collagen fibers orientation Liver capsule Skin 

Notes

Acknowledgements

The authors wish to thank Pr Mathias Brieu for useful discussions. This work was supported by the Programme Avenir Lyon Saint-Etienne (ANR-11-IDEX-0007) of Université de Lyon, within the program “Investissements d’Avenir” operated by the French National Research Agency (ANR), and by grants from Ecole Polytechnique (interdisciplinary project) and from Agence Nationale de la Recherche (ANR-13-BS09-0004-02 and ANR-10-INBS-04).

Conflict of interest

None of the authors have any professional or financial conflict of interest.

Supplementary material

10237_2017_899_MOESM1_ESM.pdf (361 kb)
Supplementary material 1 (pdf 360 KB)

References

  1. Alavi SH, Sinha A, Steward E et al (2015) Load-dependent extracellular matrix organization in atrioventricular heart valves: differences and similarities. Am J Physiol Heart Circ Physiol 309:H276–84. doi: 10.1152/ajpheart.00164.2015 CrossRefGoogle Scholar
  2. Bancelin S, Lynch B, Bonod-Bidaud C et al (2015) Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Sci Rep 5:17635. doi: 10.1038/srep17635 CrossRefGoogle Scholar
  3. Benoit A, Latour G, Marie-Claire SK, Allain JM (2016) Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure. J Mech Behav Biomed Mater 60:93–105. doi: 10.1016/j.jmbbm.2015.12.031 CrossRefGoogle Scholar
  4. Billiar KL, Sacks MS (1997) A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech 30:753–756. doi: 10.1016/S0021-9290(97)00019-5 CrossRefGoogle Scholar
  5. Butler DL, Goldstein Sa, Guilak F (2001) Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res 122:S295–S305. doi: 10.1115/1.1318906 Google Scholar
  6. Chandran PL, Barocas VH (2005) Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 128:259. doi: 10.1115/1.2165699 CrossRefGoogle Scholar
  7. Chauvet D, Carpentier A, Allain J-M et al (2010) Histological and biomechanical study of dura mater applied to the technique of dura splitting decompression in Chiari type I malformation. Neurosurg Rev 33:287–294. doi: 10.1007/s10143-010-0261-x (discussion 295)CrossRefGoogle Scholar
  8. Deyl Z, Macek K, Adam M, Vancíková O (1980) Studies on the chemical nature of elastin fluorescence. Biochim Biophys Acta 625:248–54CrossRefGoogle Scholar
  9. Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47:2043–2054. doi: 10.1016/j.jbiomech.2014.03.014 CrossRefGoogle Scholar
  10. Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New YorkCrossRefzbMATHGoogle Scholar
  11. Gasser TC (2011) An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater 7:2457–66. doi: 10.1016/j.actbio.2011.02.015 CrossRefGoogle Scholar
  12. Gasser TC, Ogden RW, Ga Holzapfel (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface R Soc 3:15–35. doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  13. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546. doi: 10.1016/j.addr.2003.08.002 CrossRefGoogle Scholar
  14. Goulam Houssen Y, Gusachenko I, Schanne-Klein M-C, Allain J-M (2011) Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic microscopy. J Biomech 44:2047–2052. doi: 10.1016/j.jbiomech.2011.05.009 CrossRefGoogle Scholar
  15. Hannafin JA, Arnoczky SP (1994) Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. J Orthop Res 12:350–6. doi: 10.1002/jor.1100120307 CrossRefGoogle Scholar
  16. Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 30:753–767. doi: 10.1114/1.1492812 CrossRefGoogle Scholar
  17. Humphrey JD (2003) Review paper: continuum biomechanics of soft biological tissues. Proc R Soc A Math Phys Eng Sci 459:3–46. doi: 10.1098/rspa.2002.1060 MathSciNetCrossRefzbMATHGoogle Scholar
  18. Jayyosi C (2015) Caractérisation mécanique et microstructurale du comportement à rupture de la capsule de Glisson pour la prédiction du risque de lésions des tissus hépatiques humains. Université Claude Bernard Lyon 1Google Scholar
  19. Jayyosi C, Coret M, Bruyère-Garnier K (2016) Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging. J Mech Behav Biomed Mater 54:229–243. doi: 10.1016/j.jmbbm.2015.09.031 CrossRefGoogle Scholar
  20. Jayyosi C, Fargier G, Coret M, Bruyère-Garnier K (2014) Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues. Acta Biomater 10:2591–601. doi: 10.1016/j.actbio.2014.02.031 CrossRefGoogle Scholar
  21. Keyes JT, Lockwood DR, Simon BR, Vande Geest JP (2013) Deformationally dependent fluid transport properties of porcine coronary arteries based on location in the coronary vasculature. J Mech Behav Biomed Mater 17:296–306. doi: 10.1016/j.jmbbm.2012.10.002 CrossRefGoogle Scholar
  22. Lanir Y, Salant EL, Foux A (1988) Physico-chemical and microstructural changes in collagen fiber bundles following stretch in-vitro. Biorheology 25:591–603Google Scholar
  23. Loerakker S, Ristori T, Baaijens FPT (2016) A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater 58:173–187. doi: 10.1016/j.jmbbm.2015.10.001 CrossRefGoogle Scholar
  24. Lynch B, Bancelin S, Bonod-Bidaud C et al (2016) A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomater. doi: 10.1016/j.actbio.2016.12.051 Google Scholar
  25. Mauri a, Perrini M, Mateos JM (2013) Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology. Placenta 34:1020–1026. doi: 10.1016/j.placenta.2013.09.002 CrossRefGoogle Scholar
  26. Mauri A, Ehret AE, Perrini M et al (2015) Deformation mechanisms of Human amnion: quantitative studies based on second harmonic generation microscopy. J Biomech. doi: 10.1016/j.jbiomech.2015.01.045
  27. Obbink-Huizer C, Oomens CWJ, Loerakker S et al (2014) Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomech Model Mechanobiol 13:227–236. doi: 10.1007/s10237-013-0501-4 CrossRefGoogle Scholar
  28. Puxkandl R, Zizak I, Paris O et al (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc Lond B Biol Sci 357:191–197. doi: 10.1098/rstb.2001.1033 CrossRefGoogle Scholar
  29. Ramanujan S (1914) Modular equations and approximations to pi. Q J Math 45:350–372zbMATHGoogle Scholar
  30. Raub CB, Unruh J, Suresh V et al (2008) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J 94:2361–2373. doi: 10.1529/biophysj.107.120006 CrossRefGoogle Scholar
  31. Rezakhaniha R, Agianniotis a, Schrauwen JTC et al (2012) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11:461–473. doi: 10.1007/s10237-011-0325-z CrossRefGoogle Scholar
  32. Robert L (2002) Elastin, past, present and future. Pathol Biol 50:503–511. doi: 10.1016/S0369-8114(02)00336-X CrossRefGoogle Scholar
  33. Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125:280. doi: 10.1115/1.1544508 CrossRefGoogle Scholar
  34. Screen HRC, Evans SL (2009) Measuring strain distributions in tendon using confocal microscopy and finite elements. J Strain Anal Eng Des 44:327–335. doi: 10.1243/03093247JSA491 CrossRefGoogle Scholar
  35. Tang T, Ebacher V, Cripton P et al (2015) Shear deformation and fracture of human cortical bone. Bone 71:25–35. doi: 10.1016/j.bone.2014.10.001 CrossRefGoogle Scholar
  36. Vijayaraghavan S, Huq R, Hausman MR (2014) Methods of peripheral nerve tissue preparation for second harmonic generation imaging of collagen fibers. Methods 66:246–255. doi: 10.1016/j.ymeth.2013.08.012 CrossRefGoogle Scholar
  37. Voss B, Rauterberg J, Allam S, Pott G (1980) Distribution of collagen type I and type III and of two collagenous components of basement membranes in the human liver. Pathol Res Pract 170:50–60. doi: 10.1016/S0344-0338(80)80155-5 CrossRefGoogle Scholar
  38. Zoumi A, Lu X, Kassab GS, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87:2778–2786. doi: 10.1529/biophysj.104.042887 CrossRefGoogle Scholar
  39. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019. doi: 10.1073/pnas.172368799 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. Jayyosi
    • 1
  • J.-S. Affagard
    • 2
    • 3
  • G. Ducourthial
    • 4
  • C. Bonod-Bidaud
    • 5
  • B. Lynch
    • 2
  • S. Bancelin
    • 4
  • F. Ruggiero
    • 5
  • M.-C. Schanne-Klein
    • 4
  • J.-M. Allain
    • 2
    • 3
  • K. Bruyère-Garnier
    • 1
    Email author
  • M. Coret
    • 6
  1. 1.IFSTTAR, UMR_T9406, LBMCUniv Lyon, Université Claude Bernard Lyon 1LyonFrance
  2. 2.LMS, Ecole Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance
  3. 3.InriaUniversité Paris-SaclayPalaiseauFrance
  4. 4.LOB, Ecole Polytechnique, CNRS, INSERMUniversité Paris-SaclayPalaiseauFrance
  5. 5.Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, CNRSUniversité Lyon 1LyonFrance
  6. 6.LUNAM Université, GEM, UMR CNRS 6183, Ecole Centrale de NantesUniversité de NantesPalaiseauFrance

Personalised recommendations