Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1361–1372 | Cite as

Viscosity and haemodynamics in a late gestation rat feto-placental arterial network

  • Nikhilesh Bappoo
  • Lachlan J. Kelsey
  • Louis Parker
  • Tim Crough
  • Carmel M. Moran
  • Adrian Thomson
  • Megan C. Holmes
  • Caitlin S. Wyrwoll
  • Barry J. Doyle
Original Paper

Abstract

The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology. The aim of this work was to create a comprehensive 3D computational fluid dynamics model of a substructure of the rat feto-placental arterial network and investigate the influence of viscosity on wall shear stress (WSS). Late gestation rat feto-placental arteries were perfused with radiopaque Microfil and scanned via micro-computed tomography to capture the feto-placental arterial geometry in 3D. A detailed description of rat fetal blood viscosity parameters was developed, and three different approaches to feto-placental haemodynamics were simulated in 3D using the finite volume method: Newtonian model, non-Newtonian Carreau–Yasuda model and Fåhræus–Lindqvist effect model. Significant variability in WSS was observed between different viscosity models. The physiologically-realistic simulations using the Fåhræus–Lindqvist effect and rat fetal blood estimates of viscosity revealed detailed patterns of WSS throughout the arterial network. We found WSS gradients at bifurcation regions, which may contribute to vessel enlargement, and sprouting and pruning during angiogenesis. This simulation of feto-placental haemodynamics shows the heterogeneous WSS distribution throughout the network and demonstrates the ability to determine physiologically-relevant WSS magnitudes, patterns and gradients. This model will help advance our understanding of vascular physiology and remodelling in the feto-placental network.

Keywords

Feto-placental Haemodynamics Computational fluid dynamics Wall shear stress 

Supplementary material

10237_2017_892_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (docx 3337 KB)

References

  1. Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, Cross JC (2002) Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 250:358–373. doi:10.1006/dbio.2002.0773
  2. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772Google Scholar
  3. Bernard ES, Craina M, Bernard SI (2013) Hemodynamics of human placenta. WIT Trans Biomed Health 17:39–48. doi:10.2495/BIO130041 CrossRefGoogle Scholar
  4. Burton GJ, Jauniaux E (1995) Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. Br J Obstet Gynaecol 102(10):818–825CrossRefGoogle Scholar
  5. Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reproduction 138:895–902. doi:10.1530/REP-09-0092
  6. Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130:1–4Google Scholar
  7. Clark AR, Lin M, Tawhai M, Saghian R, James JL (2015) Multiscale modelling of the feto-placental vasculature. Interface Focus 5:20140078. doi:10.1098/rsfs.2014.0078 CrossRefGoogle Scholar
  8. Detmar J, Rennie MY, Whiteley KJ, Qu D, Taniuchi Y, Shang X, Casper RF, Adamson SL, Sled JG, Jurisicova A (2008) Fetal growth restriction triggered by polycyclic aromatic hydrocarbons is associated with altered placental vasculature and AhR-dependent changes in cell death. Am J Physiol Endocrinol Metab 295:E519–530. doi:10.1152/ajpendo.90436.2008 CrossRefGoogle Scholar
  9. Dolan JM, Sim FJ, Meng H, Kolega J (2012) Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 302:C1109–C1118. doi:10.1152/ajpcell.00369.2011
  10. Dolan JM, Meng H, Sim FJ, Kolega J (2013) Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress. Am J Physiol Cell Physiol 305:C854–866. doi:10.1152/ajpcell.00315.2012 CrossRefGoogle Scholar
  11. Faber JJ (1995) Review of flow limited transfer in the placenta. Int J Obstet Anesth 4(4):230–237. doi:10.1016/0959-289X(95)82916-X CrossRefGoogle Scholar
  12. Fåhræus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568Google Scholar
  13. Feintuch A, Ruengsakulrach P, Lin A, Zhang J, Zhou YQ, Bishop J, Davidson L, Courtman D, Pearce Foster FS, Steinman DA, Henkelman RM, Ethier CR (2007) Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am J Physiol Heart Circ Physiol 292:H884–892. doi:10.1152/ajpheart.00796.2006 CrossRefGoogle Scholar
  14. Georgiades P, Ferguson-Smith AC, Burton GJ (2002) Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23:3–19. doi:10.1053/plac.2001.0738 CrossRefGoogle Scholar
  15. Godde R, Kurz H (2001) Structural and biophysical simulation of angiogenesis and vascular remodeling. Dev Dyn 220:387–401. doi:10.1002/dvdy.1118 CrossRefGoogle Scholar
  16. Gordan Z, Eytan O, Jaffa AJ, Elad D (2007) Fetal blood flow in branching models of the chorionic arterial vasculature. Ann NY Acad Sci 1101:250–265. doi:10.1196/annals.1389.037 CrossRefGoogle Scholar
  17. Guzman RJ, Abe K, Zarins CK (1997) Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery 122:273–279. (discussion 279–280). doi:10.1016/S0039-6060(97)90018-0
  18. Honda T, Honda K, Kokubun C, Nishimura T, Hasegawa M, Nishida A, Inui T, Kitamura K (2008) Time-course changes of hematology and clinical chemistry values in pregnant rats. J Toxicol Sci 33:375–380. doi:10.2131/jts.33.375
  19. Jones EAV (2010) Mechanotransduction and blood fluid dynamics in developing blood vessels. Can J Chem Eng 88:136–143. doi:10.1002/cjce.20290 CrossRefGoogle Scholar
  20. Kristen A, Kelsey LJ, Wintermantel E, Doyle BJ (2016) Fundus image based blood flow simulation of the retinal arteries. In: Joldes GR, Doyle BJ, Miller K, Wittek A, Nielson PMF (eds) Computational biomechanics for medicine: imaging, modelling and computing, vol 7. Springer, New York, pp 143-154. doi:10.1007/978-3-319-28329-6_13
  21. Lecarpentier E, Bhatt M, Bertin GI, Salomon L, Deleron P, Fournier T, Barakat AI, Tsatsaris V (2016) Computational fluid dynamic simulations of maternal circulation: wall shear stress in the human placenta and its biological implications. PLoS ONE 11:e0147262. doi:10.1371/journal.pone.0147262 CrossRefGoogle Scholar
  22. Lipowsky HH, Kovalcheck S, Zweifach BW (1978) The distribution of blood rheological parameters in the microcirculation of cat mesentery. Circ Res 43:738–749. doi:10.1161/01.RES.43.5.738 CrossRefGoogle Scholar
  23. Lipowsky HH, Usami S, Chein S (1980) In vivo measurements of ‘apparent viscosity’ and microvessel hematocrit in the mesentery of the cat. Microvasc Res 19:297–319. doi:10.1016/0026-2862(80)90050-3 CrossRefGoogle Scholar
  24. Linderkamp O (2004) Blood viscosity of the neonate. NeoReviews 5:e406–e416. doi:10.1542/neo.5-10-e406 CrossRefGoogle Scholar
  25. Linderkamp O, Versmold HT, Riegel KP, Betke K (1984) Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults. Pediatrics 74:45–51Google Scholar
  26. Malek J, Azar AT, Nasralli B, Tekari M, Kamoun H, Tourki R (2015) Computational analysis of blood flow in the retinal arteries and veins using fundus image. Comp Math Appl 69:101–116. doi:10.1016/j.camwa.2014.11.017 CrossRefMATHGoogle Scholar
  27. Mu J, Adamson SL (2006) Developmental changes in hemodynamics of uterine artery, utero- and umbilicoplacental, and vitelline circulations in mouse throughout gestation. Am J Physiol Heart Circ Physiol 291(3):H1421–1428. doi:10.1152/ajpheart.00031.2006 CrossRefGoogle Scholar
  28. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299. doi:10.1114/1.1326031 CrossRefGoogle Scholar
  29. Pearce P, Brownhill P, Janacek J, Jirkovska M, Kubinova L, Chernyavsky IL, Jensen OE (2016) Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries. PLoS ONE 11(10):e0165369. doi:10.1371/journal.pone.0165369 CrossRefGoogle Scholar
  30. Plitman Mayo R, Olsthoon J, Charnock-Jones DS, Burton GJ, Oyen ML (2016) Computational modeling of the structure-function relationship in human placental terminal villi. J Biomech 49:3780–3787. doi:10.1016/j.biomech.2016.10.001 CrossRefGoogle Scholar
  31. Pries AR, Secomb TW, Gebner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistence to blood flow in microvessels in vivo. Circ Res 75:904–915. doi:10.1161/01.RES.75.5.904 CrossRefGoogle Scholar
  32. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667. doi:10.1016/S0008-6363(96)00065-X
  33. Rennie MY, Detmar J, Whiteley KJ, Jurisicova A, Adamson SL, Sled JG (2012) Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice. Am J Physiol Heart Circ Physiol 302:H1261–1273. doi:10.1152/ajpheart.00776.2011 CrossRefGoogle Scholar
  34. Rennie MY, Detmar J, Whiteley KJ, Yang J, Jurisicova A, Adamson SL, Sled JG (2011) Vessel tortuousity and reduced vascularization in the fetoplacental arterial tree after maternal exposure to polycyclic aromatic hydrocarbons. Am J Physiol Heart Circ Physiol 300:H675–684. doi:10.1152/ajpheart.00510.2010
  35. Rennie MY, Rahman A, Whiteley KJ, Sled JG, Adamson SL (2015) Site-specific increases in utero- and fetoplacental arterial vascular resistance in eNOS-deficient mice due to impaired arterial enlargement. Biol Reprod 92:48. doi:10.1095/biolreprod.114.123968 CrossRefGoogle Scholar
  36. Rennie MY, Sled JG, Adamson SL (2014) Effects of genes and environment on the fetoplacental arterial microcirculation in mice revealed by micro-computed tomography imaging. Microcirculation 21:48–57. doi:10.1111/micc.12073 CrossRefGoogle Scholar
  37. Rennie MY, Whiteley KJ, Kulandavelu S, Adamson SL, Sled JG (2007) 3D visualisation and quantification by microcomputed tomography of late gestational changes in the arterial and venous feto-placental vasculature of the mouse. Placenta 28:833–840. doi:10.1016/j.placenta.2006.12.005 CrossRefGoogle Scholar
  38. Riopel L, Fouron JC, Bard H (1982) Blood viscosity during the neonatal period: the role of plasma and red blood cell type. J Pediatr 100:449–453CrossRefGoogle Scholar
  39. Roache PJ (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng 116:405–413. doi:10.1115/1.2910291 CrossRefGoogle Scholar
  40. Roberts DJ, Post MD (2008) The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol 61:1254–1260. doi:10.1136/jcp.2008.055236
  41. Soares MJ, Chakraborty D, Karim Rumi MA, Konno T, Renaud SJ (2012) Rat placentation: an experimental model for investigating the hemochorial maternal–fetal interface. Placenta 33:233–243. doi:10.1016/j.placenta.2011.11.026 CrossRefGoogle Scholar
  42. Spiegel M, Redel T, Zhang YJ, Struffert T, Hornegger J, Grossman RG, Doerfler A, Karmonik C (2011) Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comp Meth Biomech Biomed Eng 14:9–22. doi:10.1080/10255842.2010.518565 CrossRefGoogle Scholar
  43. Sprague B, Chesler NC, Magness RR (2010) Shear stress regulation of nitric oxide production in uterine and placental artery endothelial cells: experimental studies and hemodynamic models of shear stress forces on ednotherlial cells. Int J Dev Biol 54(2–3):331–339. doi:10.1387/ijdb.082832bs CrossRefGoogle Scholar
  44. Vitello DJ, Ripper RM, Fettiplace MR, Weinberg GL, Vitello JM (2015) Blood density is nearly equal to water density: a validation study of the gravimetric method of measuring intraoperative blood loss. J Vet Med 2015:152730. doi:10.1155/2015/152730 CrossRefGoogle Scholar
  45. Whiteley KJ, Adamson SL, Pfarrer CD (2006) Vascular corrosion casting of the uteroplacental and fetoplacental vasculature in mice. Methods Mol Med 121:371–392. doi:10.1385/1-59259-983-4:369
  46. Wyrwoll CS, Kerrigan D, Holmes MC, Seckl JR, Drake AJ (2012) Altered placental methyl donor transport in the dexamethasone programmed rat. Placenta 33(3):220–223. doi:10.1016/j.placenta.2011.12.017
  47. Yang J, Yu LX, Rennie MY, Sled JG, Henkelman RM (2010) Comparative structural and hemodynamic analysis of vascular trees. Am J Physiol Heart Circ Physiol 298:H1249–1259. doi:10.1152/ajpheart.00363.2009 CrossRefGoogle Scholar
  48. Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM, Roberts CT, Morrison JL (2015) Placental adaptations in growth restriction. Nutrients 7:360–389. doi:10.3390/nu7010360 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nikhilesh Bappoo
    • 1
    • 2
  • Lachlan J. Kelsey
    • 1
    • 2
  • Louis Parker
    • 1
    • 2
  • Tim Crough
    • 3
  • Carmel M. Moran
    • 4
  • Adrian Thomson
    • 4
  • Megan C. Holmes
    • 4
  • Caitlin S. Wyrwoll
    • 3
  • Barry J. Doyle
    • 1
    • 2
    • 4
  1. 1.Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchPerthAustralia
  2. 2.School of Mechanical and Chemical EngineeringThe University of Western AustraliaPerthAustralia
  3. 3.School of Human SciencesThe University of Western AustraliaPerthAustralia
  4. 4.Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK

Personalised recommendations