Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 2, pp 681–692 | Cite as

Constitutive description of human femoropopliteal artery aging

  • Alexey Kamenskiy
  • Andreas Seas
  • Paul Deegan
  • William Poulson
  • Eric Anttila
  • Sylvie Sim
  • Anastasia Desyatova
  • Jason MacTaggart
Original Paper

Abstract

Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery’s response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens (\(n=579\)) were obtained from \(n=351\) predominantly male (80 %) donors 54±15 years old (range 13–82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress–stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased (\(p<0.01\)). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.

Keywords

Femoropopliteal artery Mechanical properties Biaxial testing Constitutive modeling Remodeling Peripheral artery disease 

Notes

Acknowledgments

Research reported in this publication was supported in part by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Numbers R01 HL125736 and F32 HL124905. The authors also wish to acknowledge the Nebraska Organ Recovery System (NORS), the Charles and Mary Heider Fund for Excellence in Vascular Surgery, and the MARC U*STAR Program for their help and support.

Funding This study was supported in part by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Numbers R01 HL125736 and F32 HL124905.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adam DJ, Beard JD, Cleveland T et al (2005) Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934. doi: 10.1016/S0140-6736(05)67704-5 CrossRefGoogle Scholar
  2. Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput Methods Appl Mech Eng 196:3070–3078. doi: 10.1016/j.cma.2006.06.018 MathSciNetCrossRefMATHGoogle Scholar
  3. Benetos A, Laurent S, Hoeks AP (1993) Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb Vasc Biol 13:90–97. doi: 10.1161/01.ATV.13.1.90 CrossRefGoogle Scholar
  4. Bortolotto LA, Hanon O, Franconi G et al (1999) The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension 34:889–892. doi: 10.1161/01.HYP.34.4.889 CrossRefGoogle Scholar
  5. Brandfonbrener M, Landowne M, Shock NW (1955) Changes in cardiac output with age. Circulation 12:557–566. doi: 10.1161/01.CIR.12.4.557 CrossRefGoogle Scholar
  6. Conte MS, Bandyk DF, Clowes AW et al (2006) Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg 43:742–751. doi: 10.1016/j.jvs.2005.12.058 CrossRefGoogle Scholar
  7. Ferruzzi J, Vorp DA, Humphrey JD (2011) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface 8:435–450CrossRefGoogle Scholar
  8. Gasser TC, Ogden RW, Holzapfel G (2006) Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35. doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  9. Greenwald S (2007) Ageing of the conduit arteries. J Pathol 211:157–172. doi: 10.1002/path CrossRefGoogle Scholar
  10. Holzapfel GA, Ogden RW (2010) Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface 7:787–799CrossRefGoogle Scholar
  11. Holzapfel GA, Gasser TC, Ogden RW et al (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48MathSciNetCrossRefMATHGoogle Scholar
  12. Holzapfel GA, Sommer G, Auer M et al (2007) Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35:530–545CrossRefGoogle Scholar
  13. Horny L, Adamek T, Zitny R (2012) Age-related changes in longitudinal prestress in human abdominal aorta. Arch Appl Mech 83:875–888. doi: 10.1007/s00419-012-0723-4 CrossRefGoogle Scholar
  14. Horný L, Netušil M, Voňavková T (2013) Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol. doi: 10.1007/s10237-013-0534-8 Google Scholar
  15. Horný L, Adámek T, Kulvajtová M (2016) A comparison of age-related changes in axial prestretch in human carotid arteries and in human abdominal aorta. Biomech Model Mechanobiol. doi: 10.1007/s10237-016-0797-y Google Scholar
  16. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. SpringerGoogle Scholar
  17. Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50:53–78. doi: 10.1007/s12013-007-9002-3 CrossRefGoogle Scholar
  18. Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42:1–8. doi: 10.1016/j.jbiomech.2008.11.011.Fundamental CrossRefGoogle Scholar
  19. Iida O, Nanto S, Uematsu M et al (2006) Effect of exercise on frequency of stent fracture in the superficial femoral artery. Am J Cardiol 98:272–274CrossRefGoogle Scholar
  20. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fIbrosis. Hypertension 38:581–587CrossRefGoogle Scholar
  21. Jani B, Rajkumar C (2006) Ageing and vascular ageing. Postgrad Med J 82:357–362. doi: 10.1136/pgmj.2005.036053 CrossRefGoogle Scholar
  22. Kamenskiy AV, Pipinos II, Carson JS et al (2014) Age and disease-related geometric and structural remodeling of the carotid artery. J Vasc Surg. doi: 10.1016/j.jvs.2014.10.041
  23. Kamenskiy AV, Pipinos II, Dzenis YA et al (2014b) Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater 10:1301–1313. doi: 10.1016/j.actbio.2013.12.027 CrossRefGoogle Scholar
  24. Kamenskiy A, Dzenis Y, Kazmi SAJ et al (2014c) Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common Iliac arteries. Biomech Model Mechanobiol 13:1341–1359. doi: 10.1007/s10237-014-0576-6 CrossRefGoogle Scholar
  25. Kamenskiy AV, Pipinos II, Dzenis Ya et al (2015) Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 11:304–313. doi: 10.1016/j.actbio.2014.09.050 CrossRefGoogle Scholar
  26. Kamenskiy A, Seas A, Bowen G et al (2016) In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater 32:231–237. doi: 10.1016/j.actbio.2016.01.002 CrossRefGoogle Scholar
  27. Lakatta EG, Wang M, Najjar SS (2009) Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am 93:583–604. doi: 10.1016/j.mcna.2009.02.008 CrossRefGoogle Scholar
  28. Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18:278–292. doi: 10.1161/01.RES.18.3.278 CrossRefGoogle Scholar
  29. Lee H-Y, Oh B-H (2010) Aging and arterial stiffness. Circ J 74:2257–2262. doi: 10.1253/circj.CJ-10-0910 CrossRefGoogle Scholar
  30. MacTaggart J, Phillips N, Lomneth C et al (2014) Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J Biomech 47:2249–2256CrossRefGoogle Scholar
  31. Mahoney EM, Wang K, Cohen DJ et al (2008) One-year costs in patients with a history of or at risk for atherothrombosis in the United States. Circ Cardiovasc Qual Outcomes 1:38–45. doi: 10.1161/CIRCOUTCOMES.108.775247 CrossRefGoogle Scholar
  32. Matsumoto T, Tsuchida M, Sato M (1996) Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation. Am J Physiol Soc H1711–1716Google Scholar
  33. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461. doi: 10.1016/S0065-3233(05)70013-9 CrossRefGoogle Scholar
  34. Mozaffarian D, Benjamin EJ, Go AS, et al (2015) Heart disease and stroke statistics—2016 update: a report from the American Heart AssociationGoogle Scholar
  35. O’Rourke MF (2007) Arterial aging: pathophysiological principles. Vasc Med 12:329–341. doi: 10.1177/1358863X07083392 CrossRefGoogle Scholar
  36. Qiu J, Zheng Y, Hu J et al (2014) Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11:20130852. doi: 10.1098/rsif.2013.0852 CrossRefGoogle Scholar
  37. Schillinger M, Sabeti S, Loewe C (2006) Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med 354:1879–1888CrossRefGoogle Scholar
  38. Schillinger M, Sabeti S, Dick P et al (2007) Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749. doi: 10.1161/CIRCULATIONAHA.107.688341 CrossRefGoogle Scholar
  39. Siracuse JJ, Giles Ka, Pomposelli FB et al (2012) Results for primary bypass versus primary angioplasty/stent for intermittent claudication due to superficial femoral artery occlusive disease. J Vasc Surg 55:1001–1007. doi: 10.1016/j.jvs.2011.10.128 CrossRefGoogle Scholar
  40. Sommer G (2008) Mechanical properties of healthy and diseased human arteries. TU GrazGoogle Scholar
  41. Stonebridge PA, Brophy CM (1991) Spiral laminar flow in arteries? Lancet 338:1360–1361CrossRefGoogle Scholar
  42. Ueno H, Kanellakis P, Agrotis a, Bobik a (2000) Blood flow regulates the development of vascular hypertrophy, smooth muscle cell proliferation, and endothelial cell nitric oxide synthase in hypertension. Hypertension 36:89–96. doi: 10.1161/01.HYP.36.1.89 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexey Kamenskiy
    • 1
  • Andreas Seas
    • 2
  • Paul Deegan
    • 1
  • William Poulson
    • 1
  • Eric Anttila
    • 3
  • Sylvie Sim
    • 1
  • Anastasia Desyatova
    • 1
  • Jason MacTaggart
    • 1
  1. 1.Department of Surgery, 987690 Nebraska Medical CenterUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Chemical EngineeringUniversity of MarylandBaltimore CountyUSA
  3. 3.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations