Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 2, pp 549–560 | Cite as

Model-based cardiovascular disease diagnosis: a preliminary in-silico study

  • Shiva Ebrahimi Nejad
  • Jason P. Carey
  • M. Sean McMurtry
  • Jin-Oh Hahn
Original Paper


In this study, we developed and examined the feasibility of a model-based system identification approach to cardiovascular disease diagnosis. The basic premise of the approach is that it may be possible to diagnose cardiovascular disease from disease-induced alterations in the arterial mechanical properties manifested in the proximal and distal arterial blood pressure waveforms. It first individualizes the lumped-parameter model of wave propagation and reflection in the artery using the measurement of proximal and distal arterial blood pressure waveforms. Then, it employs a diagnosis logic, in the form of disease-specific patterns in model parameters, referred as \(\alpha , \beta \) and pulse transit time. The longitudinal change in these parameters is used to diagnose the presence of peripheral artery disease and arterial stiffening. We illustrated the feasibility of the proposed approach by testing it in a full-scale in-silico arterial tree simulation. The results showed that the approach exhibited superior sensitivity to ankle-brachial index and convenience to carotid-femoral pulse wave velocity: The model parameters \(\alpha \) and \(\beta \) responded with up to 100 and 40 % changes to peripheral artery disease with up to 50 % arterial blockage whereas the change in ankle-brachial index was \({<}5\,\%\); the same parameters responded with up to 300 and 40 % changes to up to 100 % arterial stiffening while pulse transit time changed by up to 24 %. Together with the development of more convenient techniques for the measurement of arterial blood pressure waveforms, the proposed approach may evolve into a viable alternative to the state-of-the-art techniques for cardiovascular disease diagnosis.


Diagnosis Cardiovascular disease Peripheral artery disease Arterial stiffening System identification Tube-load model 



The authors thank Dr. Mette Olusfen at North Carolina State University for providing us with the arterial tree simulation. The authors also thank Ms. Karla Telidetzki and Mr. Mason Kim for their contributions to the arterial tree simulation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest


  1. Abdollahzade M, Kim C-S, Fazeli N et al (2014) Data-driven lossy tube-load modeling of arterial tree: in-human study. J Biomech Eng 136:101011. doi: 10.1115/1.4028089 CrossRefGoogle Scholar
  2. Aboyans V, Criqui MH, Abraham P et al (2012) Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126:2890–2909. doi: 10.1161/CIR.0b013e318276fbcb CrossRefGoogle Scholar
  3. Avolio AP, Deng FQ, Li WQ et al (1985) Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 71:202–210. doi: 10.1161/01.CIR.71.2.202 CrossRefGoogle Scholar
  4. Beckman JA, Higgins CO, Gerhard-Herman M (2006) Automated oscillometric determination of the ankle-brachial index provides accuracy necessary for office practice. Hypertension 47(1):35–39Google Scholar
  5. Benetos A, Laurent S, Hoeks AP et al (1993) Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb 13:90–97. doi: 10.1161/01.ATV.13.1.90 CrossRefGoogle Scholar
  6. Brett SE, Guilcher A, Clapp B, Chowienczyk P (2012) Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Blood Press Monit 17:132–136. doi: 10.1097/MBP.0b013e328352ae5b CrossRefGoogle Scholar
  7. Carter SA (1968) Indirect systolic pressures and pulse waves in arterial occlusive diseases of the lower extremities. Circulation 37:624–637. doi: 10.1161/01.CIR.37.4.624 CrossRefGoogle Scholar
  8. Chen C-H, Nevo E, Fetics B et al (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure? Validation of generalized transfer function. Circulation 95:1827–1836. doi: 10.1161/01.CIR.95.7.1827 CrossRefGoogle Scholar
  9. Chobanian AV, Bakris GL, Black HR et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252. doi: 10.1161/01.HYP.0000107251.49515.c2 CrossRefGoogle Scholar
  10. Criqui MH, Fronek A, Barrett-Connor E et al (1985) The prevalence of peripheral arterial disease in a defined population. Circulation 71:510–515CrossRefGoogle Scholar
  11. Cruickshank K, Riste L, Anderson SG et al (2002) Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose gntolerance: an integrated index of vascular function? Circulation 106:2085–2090. doi: 10.1161/01.CIR.0000033824.02722.F7 CrossRefGoogle Scholar
  12. D’Agostino RB, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117:743–753. doi: 10.1161/CIRCULATIONAHA.107.699579 CrossRefGoogle Scholar
  13. Dalager S, Falk E, Kristensen IB, Paaske WP (2008) Plaque in superficial femoral arteries indicates generalized atherosclerosis and vulnerability to coronary death: an autopsy study. J Vasc Surg 47:296–302. doi: 10.1016/j.jvs.2007.10.037 CrossRefGoogle Scholar
  14. Ebrahimi Nejad S (2015) Diagnosis of cardiovascular diseases via system identification of tube-load model. University of Alberta, EdmontonGoogle Scholar
  15. Ethier CR, Simmons CA (2007) Introductory biomechanics? From cells to organisms. Cambridge University Press, CambridgeGoogle Scholar
  16. Faccenda F, Usui Y (1985) Measurement of the pressure drop caused by arterial stenosis? An experimental study? A case report Doppler. Angiology 36(12):899–905Google Scholar
  17. Franklin GF, Powell JD, Workman M (1998) Digital control of dynamic systems, 3rd edn. Addison Wesley Longman, Menlo Park, CAzbMATHGoogle Scholar
  18. Goff DC, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:S49–S73. doi: 10.1161/01.cir.0000437741.48606.98 CrossRefGoogle Scholar
  19. Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211:157–172CrossRefGoogle Scholar
  20. Hansen TW, Staessen JA, Torp-Pedersen C et al (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670. doi: 10.1161/CIRCULATIONAHA.105.579342
  21. Hirsch AT, Criqui MH, Treat-Jacobson D et al (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA J Am Med Assoc 286:1317–1324. doi: 10.1001/jama.286.11.1317 CrossRefGoogle Scholar
  22. Hirsch AT, Haskal ZJ, Hertzer NR et al (2006) ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation 113:e463–e465. doi: 10.1161/CIRCULATIONAHA.106.174526 CrossRefGoogle Scholar
  23. Hunter KS, Albietz JA, Lee PF et al (2010) In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hpertension: development and ex vivo validation. J Appl Physiol 108:968–975. doi: 10.1152/japplphysiol.01173.2009 CrossRefGoogle Scholar
  24. Hyun S, Forbang NI, Allison MA et al (2014) Ankle-brachial index, toe-brachial index, and cardiovascular mortality in persons with and without diabetes mellitus. J Vasc Surg 60:390–395. doi: 10.1016/j.jvs.2014.02.008 CrossRefGoogle Scholar
  25. Lawson G (2005) The importance of obtaining ankle-brachial indexes in older adults: the other vital sign. J Vasc Nurs 23:46–51. doi: 10.1016/j.jvn.2005.04.001 CrossRefGoogle Scholar
  26. Lee H-Y, Oh B-H (2010) Aging and arterial stiffness. Circ K 74:2257–2262. doi: 10.1253/circj.CJ-10-0910 CrossRefGoogle Scholar
  27. Lehmann ED (1999) Clinical Value of aortic pulse-wave velocity measurement. Lancet 354:528–529. doi: 10.1016/S0140-6736(99)00179-8 CrossRefGoogle Scholar
  28. Lin ACW, Lowe A, Sidhu K et al (2012) Evaluation of a novel sphygmomanometer, which estimates central aortic blood pressure from analysis of brachial artery suprasystolic pressure waves. J Hypertens 30:1743–1750. doi: 10.1097/HJH.0b013e3283567b94 CrossRefGoogle Scholar
  29. Loonstra JAN, Smit AJ (1996) ROC analysis of noninvasive tests for peripheral arterial disease. Ultrasound Med Biol 22:391–398Google Scholar
  30. Meijer WT, Hoes AW, Rutgers D et al (1998) Peripheral Arterial disease in the elderly: the Rotterdam study. Arterioscler Thromb Vasc Biol 18:185–192. doi: 10.1161/01.ATV.18.2.185 CrossRefGoogle Scholar
  31. Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, GenevaGoogle Scholar
  32. Mills JL, Conte MS, Armstrong DG et al (2014) The Society for Vascular Surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg 59(220–234):e2. doi: 10.1016/j.jvs.2013.08.003 Google Scholar
  33. Mukkamala R, Hahn J-O, Inan OT et al (2015) Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62:1879–1901. doi: 10.1109/TBME.2015.2441951 CrossRefGoogle Scholar
  34. Nam SC, Han SH, Lim SH et al (2010) Factors affecting the validity of ankle-brachial index in the diagnosis of peripheral arterial obstructive disease. Angiology 61:392–396. doi: 10.1177/0003319709348295
  35. Nichols W, O’Rourke M, Vlachopoulos C (1998) Mcdonald’s blood flow in arteries. Shock 9:456. doi: 10.1097/00024382-199806000-00013 Google Scholar
  36. Nise NS (2008) Control systems engineering, 5th edn. Wiley, HobokenzbMATHGoogle Scholar
  37. Norgren L, Hiatt WR, Dormandy JA et al (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). Int Angiol 26:82–157. doi: 10.1016/j.jvs.2006.12.037 Google Scholar
  38. Nwankwo T, Yoon SS, Burt V, Gu Q (2013) Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief, pp 1–8Google Scholar
  39. O’Rourke MF (2007) Arterial aging: pathophysiological principles. Vasc Med 12:329–341. doi: 10.1177/1358863X07083392 CrossRefGoogle Scholar
  40. O’Rourke MF, Staessen JA, Vlachopoulos C et al (2002) Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15:426–444. doi: 10.1016/S0895-7061(01)02319-6 CrossRefGoogle Scholar
  41. Olufsen MS (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol Circ Physiol 276:H257–H268Google Scholar
  42. Olufsen MS, Peskin CS, Kim WY et al (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299. doi: 10.1114/1.1326031 CrossRefGoogle Scholar
  43. Potier L, Abi Khalil C, Mohammedi K, Roussel R (2011) Use and utility of ankle brachial index in patients with diabetes. Eur J Vasc Endovasc Surg 41:110–116. doi: 10.1016/j.ejvs.2010.09.020 CrossRefGoogle Scholar
  44. Rashedi M, Fazeli N, Chappell A et al (2013) Comparative study on tube-load modeling of arterial hemodynamics in humans. ASME J Biomech 135:31005. doi: 10.1115/1.4023373 CrossRefGoogle Scholar
  45. Segers P, Carlier S, Pasquet A et al (2000) Individualizing the aorto-radial pressure transfer function: feasibility of a model-based approach. Am J Physiol Circ Physiol 279:H542–H549Google Scholar
  46. Shih YT, Cheng HM, Sung SH et al (2013) Comparison of two generalized transfer functions for measuring central systolic blood pressure by an oscillometric blood pressure monitor. J Hum Hypertens 27:204–210. doi: 10.1038/jhh.2012.17 CrossRefGoogle Scholar
  47. Stergiopulos N, Spiridon M, Pythoud F, Meister JJ (1996) On the wave transmission and reflection properties of stenoses. J Biomech 29:31–38. doi: 10.1016/0021-9290(95)00023-2 CrossRefGoogle Scholar
  48. Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 276:H81–H88Google Scholar
  49. Sun Z (2014) Aging, arterial stiffness, and hypertension. Hypertension 65:252–256. doi: 10.1161/HYPERTENSIONAHA.114.03617 CrossRefGoogle Scholar
  50. Wassertheurer S, Kropf J, Weber T et al (2010) A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens 24:498–504. doi: 10.1038/jhh.2010.27 CrossRefGoogle Scholar
  51. Weintraub WS, Daniels SR, Burke LE et al (2011) Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. Circulation 124:967–990. doi: 10.1161/CIR.0b013e3182285a81 CrossRefGoogle Scholar
  52. White FM (2009) Fluid mechanics. McGraw-Hill, New YorkGoogle Scholar
  53. Young DF, Cholvin NR, Roth AC (1975) Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 36:735–743. doi: 10.1161/01.RES.36.6.735 CrossRefGoogle Scholar
  54. Zhang G, Hahn JO, Mukkamala R (2011) Tube-load model parameter estimation for monitoring arterial hemodynamics. Front Physiol 2:1–18. doi: 10.3389/fphys.2011.00072 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  3. 3.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations