Skip to main content

Material model of pelvic bone based on modal analysis: a study on the composite bone

Abstract

Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone–implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young’s modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young’s modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young’s modulus and Poisson’s ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Allemang RJ (2003) The modal assurance criterion-twenty years of use and abuse. Sound Vib 37(8):14–23

    Google Scholar 

  • Amestoy PR, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41

    Article  MathSciNet  MATH  Google Scholar 

  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H (2015) PETSc web page. http://www.mcs.anl.gov/petsc

  • Conza N, Rixen D (2006) Experimental modal analysis on a human specimen: lessons learned. Exp Tech 30(6):51–55

    Article  Google Scholar 

  • Couteau B, Hobatho MC, Darmana R, Brignola JC, Arlaud JY (1998) Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. J Biomech 31(4):383–386

    Article  Google Scholar 

  • Cristofolini L, Viceconti M, Cappello A, Toni A (1996) Mechanical validation of whole bone composite femur models. J Biomech 29(4):525–535

    Article  Google Scholar 

  • Easley SK, Pal S, Tomaszewski PR, Petrella AJ, Rullkoetter PJ, Laz PJ (2007) Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Progr Biomed 85(1):32–40

    Article  Google Scholar 

  • Govers Y, Link M (2010) Stochastic model updating—covariance matrix adjustment from uncertain experimental modal data. Mech Syst Signal Process 24(3):696–706

    Article  Google Scholar 

  • Guillaume P, Verboven P, Vanlanduit S, Van Der Auweraer H, Peeters B (2003) A poly-reference implementation of the least-squares complex frequency-domain estimator. In: Proceedings of IMAC, vol 21. pp 183–192

  • Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284

    Article  Google Scholar 

  • Hernandez V, Roman J, Tomas A, Vidal V (2007) Krylov–Schur methods in slepc. Universitat Politecnica de Valencia, Technical Report STR-7

  • Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627

    Article  MATH  Google Scholar 

  • Keyak J, Fourkas M, Meagher J, Skinner H (1993) Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng 15(6):505–509

    Article  Google Scholar 

  • Khodaparast HH, Mottershead JE, Friswell MI (2008) Perturbation methods for the estimation of parameter variability in stochastic model updating. Mech Syst Signal Process 22(8):1751–1773

    Article  Google Scholar 

  • Kraft D, Schnepper K (1989) Slsqpa nonlinear programming method with quadratic programming subproblems. DLR, Oberpfaffenhofen

    Google Scholar 

  • Lauwagie T (2005) Vibration-based methods for the identification of the elastic properties of layered materials. Ph.D

  • Lauwagie T, Lambrinou K, Sol H, Heylen W (2010) Resonant-based identification of the poissons ratio of orthotropic materials. Exp Mech 50(4):437–447

    Article  Google Scholar 

  • Lauwagie T, Sol H, Heylen W (2006) Handling uncertainties in mixed numerical-experimental techniques for vibration based material identification. J Sound Vib 291(3):723–739

    Article  Google Scholar 

  • Lauwagie T, Sol H, Heylen W, Roebben G (2004) Determination of the in-plane elastic properties of the different layers of laminated plates by means of vibration testing and model updating. J Sound Vib 274(3):529–546

    Article  Google Scholar 

  • Lauwagie T, Sol H, Roebben G, Heylen W, Shi Y, Van der Biest O (2003) Mixed numerical-experimental identification of elastic properties of orthotropic metal plates. Ndt & e international 36(7):487–495

    Article  Google Scholar 

  • Mott P, Roland C (2009) Limits to poissons ratio in isotropic materials. Phys Rev B 80(13):132,104

    Article  Google Scholar 

  • Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296

    Article  Google Scholar 

  • Moussu F, Nivoit M (1993) Determination of elastic constants of orthotropic plates by a modal analysis/method of superposition. J Sound Vib 165(1):149–163

    Article  MATH  Google Scholar 

  • Naumann U (2012) The art of differentiating computer programs: an introduction to algorithmic differentiation, vol 24. SIAM, Philadelphia

    MATH  Google Scholar 

  • Neugebauer R, Werner M, Voigt C, Steinke H, Scholz R, Scherer S, Quickert M (2011) Experimental modal analysis on fresh-frozen human hemipelvic bones employing a 3d laser vibrometer for the purpose of modal parameter identification. J Biomech 44(8):1610–1613

    Article  Google Scholar 

  • Olsson AM, Sandberg GE (2002) Latin hypercube sampling for stochastic finite element analysis. J Eng Mech 128(1):121–125

    Article  Google Scholar 

  • Palanca M, Tozzi G, Cristofolini L (2016) The use of digital image correlation in the biomechanical area: a review. Int Biomech 3(1):1–21

    Article  Google Scholar 

  • Pappa RS, Elliott KB, Schenk A (1993) Consistent-mode indicator for the eigensystem realization algorithm. J Guid Control Dyn 16(5):852–858

    Article  MATH  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Pintelon R, Guillaume P, Schoukens J (2007) Uncertainty calculation in (operational) modal analysis. Mech Syst Signal Process 21(6):2359–2373

    Article  Google Scholar 

  • Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40(13):2982–2989

    Article  Google Scholar 

  • Scholz R, Hoffmann F, von Sachsen S, Drossel WG, Klöhn C, Voigt C (2013) Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis. J Biomech 46(15):2667–2673

    Article  Google Scholar 

  • Shi Y, Sol H, Hua H (2006) Material parameter identification of sandwich beams by an inverse method. J Sound Vib 290(3):1234–1255

    Article  Google Scholar 

  • Shim VB, Battley M, Anderson IA, Munro JT (2015) Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone. Comput Methods Biomech Biomed Eng 18(14):1495–1499

    Article  Google Scholar 

  • Silva TA, Maia NM, Link M, Mottershead JE (2016) Parameter selection and covariance updating. Mech Syst Signal Process 70:269–283

  • Taddei F, Pancanti A, Viceconti M (2004) An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys 26(1):61–69

    Article  Google Scholar 

  • Taylor W, Roland E, Ploeg H, Hertig D, Klabunde R, Warner M, Hobatho M, Rakotomanana L, Clift S (2002) Determination of orthotropic bone elastic constants using fea and modal analysis. J Biomech 35(6):767–773

    Article  Google Scholar 

  • Thacker BH, Nicolella DP, Kumaresan S, Yoganandan N, Pintar FA (2000) Probabilistic finite element analysis of the human lower cervical spine. ASME-PUBLICATIONS-BED 48:237–238

    Google Scholar 

  • The CGAL Project (2015) CGAL user and reference manual, 4.7 edn. CGAL Editorial Board. http://doc.cgal.org/4.7/Manual/packages.html

  • Vacher P, Jacquier B, Bucharles A (2010) Extensions of the mac criterion to complex modes. In: Proceedings of the international conference on noise and vibration engineering. pp 2713–2725

  • Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

Download references

Acknowledgments

This publication was written at the Technical University of Liberec, Faculty of Mechanical Engineering with the support of the Institutional Endowment for the Long Term Conceptual Development of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Henyš.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in relation to the present study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henyš, P., Čapek, L. Material model of pelvic bone based on modal analysis: a study on the composite bone. Biomech Model Mechanobiol 16, 363–373 (2017). https://doi.org/10.1007/s10237-016-0822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0822-1

Keywords

  • Modal analysis
  • Pelvic bone
  • Finite element
  • Optimisation
  • Uncertainty