Skip to main content

Advertisement

Log in

On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this work, we address the simulation of three-dimensional arterial blood flow and its effect on the stress state of arterial walls. The novel contribution is the unprecedented combination of several modeling techniques to account for (1) the fact that known configurations for the arterial wall are in a preloaded state, (2) the compliance of the vessel segments, (3) proper boundary data over the non-physical interfaces resulting from the isolation of an arterial district from the rest of the arterial tree, (4) the presence of surrounding tissues in which the vessel is embedded and (5) residual stress state due to pre-stretch. Firstly, we formulate both the forward mechanical problem when the reference (zero-load) configuration is assumed to be known and, the preload problem arising when the known domain is a configuration at equilibrium with a certain load state (typically due to internal pressure and tethering forces). Then, two additional complexities are faced: the fluid–structure interaction problem that follows when the compliant vessels are coupled with the blood flow, and the introduction of non-physical boundaries coming from the artificial isolation of the arterial district from the original vessel. This, in turn, posses the problem of coupling dimensionally heterogeneous models to incorporate the effect of upstream and downstream systemic impedances. Additionally, a viscoelastic support on the external surface of the vessel is also incorporated. Two examples are presented to quantify in a physiologically consistent scenario the differences in simulation results when either considering or not the preload state of arterial walls. These computational simulations shed light on the validity of simplifying hypotheses in most hemodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alastrué V, Rodríguez J, Calvo B, Doblaré M (2007) Structural damage models for fibrous biological soft tissues. Int J Solid Struct 44(18–19):5894–5911

    Article  MATH  Google Scholar 

  • Alastrué V, Peña E, Martínez MA, Doblaré M (2007) Assessing the use of the opening angle method to enforce residual stresses in patient-specific arteries. Ann Biomed Eng 35(10):1821–1837

    Article  Google Scholar 

  • Avolio A (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718

    Article  Google Scholar 

  • Baek S, Rajagopal K, Humphrey J (2005) Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J Elast 80(1–3):13–31

    Article  MathSciNet  MATH  Google Scholar 

  • Balzani D, Brinkhues S, Holzapfel Ga (2012) Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput Methods Appl Mech Eng 213–216:139–151

    Article  MathSciNet  MATH  Google Scholar 

  • Bharadvaj B, Mabon R, Giddens D (1982) Steady flow in a model of the human carotid bifurcation. Part I: flow visualization. J Biomech 15(5):349–362

  • Blanco PJ, Feijóo RA, Urquiza SA (2007) A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput Methods Appl Mech Eng 41–44:4391–4410

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco PJ, Pivello MR, Urquiza SA, Feijóo RA (2009) On the potentialities of 3D–1D coupled models in hemodynamics simulations. J Biomech 42(7):919–930

    Article  Google Scholar 

  • Blanco PJ, Urquiza SA, Feijóo RA (2010) Assessing the influence of heart rate in local hemodynamics through coupled 3D–1D–0D models. Int J Numer Methods Biomed Eng 26:890–903

    MATH  Google Scholar 

  • Blanco PJ, Deparis S, Malossi ACI (2013a) On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems. J Comput Phys 251:136–155

    Article  MathSciNet  Google Scholar 

  • Blanco PJ, Leiva JS, Buscaglia GC (2013b) A black-box decomposition approach for coupling heterogeneous components in hemodynamics simulations. Int J Numer Methods Biomed Eng 29(3):408–427

  • Blanco PJ, Feijóo RA (2013) A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med Eng Phys 35:652–667

    Article  Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2011) Computational analysis of anterior communicating artery aneurysm shear stress before and after aneurysm formation. J Phys Conf Ser 332(1):012001

    Article  Google Scholar 

  • Crosetto P, Reymond P, Deparis S, Kontaxakis D, Stergiopulos N, Quarteroni A (2011) Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1):46–57

    Article  MathSciNet  MATH  Google Scholar 

  • Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J (2006) Cfd analysis incorporating the influence of wall motion: application to intracranial aneurysms. Medical image computing and computer-assisted intervention MICCAI 2006:438–445

    Google Scholar 

  • Deparis S, Fernandez M, Formaggia L, Nobile F (2003) Acceleration of a fixed point algorithm for fluid–structure interaction using transpiration conditions. In: Bathe KJ (ed) Computational fluid and solid mechanics 2003. Elsevier Science Ltd, Oxford, pp 1307–1311

    Chapter  Google Scholar 

  • Deparis S, Discacciati M, Fourestey G, Quarteroni A (2006) Fluid–structure algorithms based on Steklov–Poincar operators. Comput Methods Appl Mech Eng 195(41–43):5797–5812

    Article  MathSciNet  MATH  Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester

    Book  Google Scholar 

  • Feng B, Li B, Nauman EA, Schild JH (2007) Theoretical and electrophysiological evidence for axial loading about aortic baroreceptor nerve terminals in rats. Am J Phys Heart Circ Physiol 293(6):H3659–H3672

    Article  Google Scholar 

  • Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the circulatory system: a preliminary analysis. Comput Vis Sci 2(2–3):75–83

    Article  MATH  Google Scholar 

  • Formaggia L, Gerbeau J, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582

    Article  MathSciNet  MATH  Google Scholar 

  • Formaggia L, Quarteroni A, Vergara C (2013) On the physical consistency between three-dimensional and one-dimensional models in haemodynamics. J Comput Phys 244:97–112

    Article  MathSciNet  MATH  Google Scholar 

  • Franca LP, Hughes TJ (1988) Two classes of mixed finite element methods. Comput Methods Appl Mech Eng 59:89–129

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gee M, Reeps C, Eckstein H, Wall W (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42:1732–1739

    Article  Google Scholar 

  • Gee MW, Forster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72

    Article  MathSciNet  MATH  Google Scholar 

  • Govindjee S, Mihalic PA (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136(1–2):47–57

    Article  MATH  Google Scholar 

  • Govindjee S, Mihalic PA (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Methods Eng 43(5):821–838

    Article  MATH  Google Scholar 

  • Grinberg L, Karniadakis GE (2008) Outflow boundary conditions for arterial networks with multiple outlets. Ann Biomed Eng 36(9):1496–1514

    Article  Google Scholar 

  • Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz M, Finkelstein EA, Hong Y, Johnston ALJD, Cand Khera S, Lloyd-Jones D, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American heart association. Circulation 123(8):933–944

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Ogden R (2010a) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466(2118):1551–1597

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Ogden RW (2010b) Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface 7(46):787–799

    Article  Google Scholar 

  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35(4):530–545

    Article  Google Scholar 

  • Honda Y, Fitzgerald PJ (2008) Frontiers in intravascular imaging technologies. Circulation 117(15):2024–37

    Article  Google Scholar 

  • Hsu M, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation. Finite Elem Anal Des 47(6):593–599

    Article  MathSciNet  Google Scholar 

  • Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJ, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73:173–189

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer, Berlin

    Book  Google Scholar 

  • Joosten MM, Dettmer WG, Perić D (2009) Analysis of the block Gauss–Seidel solution procedure for a strongly coupled model problem with reference to fluid–structure interaction. Int J Numer Methods Eng 78(7):757–778

    Article  MathSciNet  MATH  Google Scholar 

  • Kim H, Figueroa C, Hughes T, Jansen K, Taylor C (2009a) Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng 198(45–46):3551–3566

    Article  MathSciNet  MATH  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009b) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11):2153–2169

    Article  Google Scholar 

  • Leiva J, Blanco P, Buscaglia G (2011) Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Multiscale Model Simul 9(2):872–903

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis M, Kerckhoffs R (2010) Current progress in patient-specific modeling. Brief Bioinf 11(1):111–126

    Article  Google Scholar 

  • Li D, Robertson AM (2009) A structural multi-mechanism damage model for cerebral arterial tissue. J Biomech Eng 131(10):101-013

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40(40):693–696

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan M (2008) Inverse method of stress analysis for cerebral aneurysms. Biomech Model Mechanobiol 7(6):477–486

    Article  Google Scholar 

  • Malossi ACI, Blanco PJ, Crosetto P, Deparis S, Quarteroni A (2013) Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model Simul 11(2):474–506

    Article  MathSciNet  MATH  Google Scholar 

  • Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control, chapter 1. World Health Organization, Geneva

    Google Scholar 

  • Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39(6):1010–1020

    Article  Google Scholar 

  • Mintz GS, Nissen SE, Anderson WD, Bailey SR et al (2001) American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus) 33a report of the american college of cardiology task force on clinical expert consensus documents developed in collaboration with the european society of cardiology endorsed by the society of cardiac angiography and interventions. J Am Coll Cardiol 37(5):1478–1492

    Article  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa C, Chapelle D, Taylor CA, Gerbeau JF (2012) External tissue support and fluid–structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

  • Orth RC, Wallace MJ, Kuo MD (2009) C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 20(7):S538–S544

    Article  Google Scholar 

  • Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N (2013) Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys 35(6):784–791

    Article  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    Article  Google Scholar 

  • van Rooij WJ, Sprengers ME, de Gast AN, Peluso JPP, Sluzewski M (2008) 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol 29(5):976–979

    Article  Google Scholar 

  • Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 96(1–3):60–89

    Article  Google Scholar 

  • Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD (2002) Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and mri. Magn Reson Med 47(1):149–159

    Article  Google Scholar 

  • Taylor C, Hughes T, Zarins C (1998) Finite element blood flow modeling in arteries. Comput Methods Appl Mech Eng 158:155–196

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195(13–16):1885–1895

    Article  MathSciNet  MATH  Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43(1):151–159

    Article  MATH  Google Scholar 

  • Urquiza SA, Blanco PJ, Vénere MJ, Feijóo RA (2006) Multidimensional modeling for the carotid blood flow. Comput Methods Appl Mech Eng 195:4002–4017

    Article  MATH  Google Scholar 

  • Valentín A, Humphrey JD (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos Trans Ser A Math Phys Eng Sci 367(1902):3585–3606

    Article  MathSciNet  MATH  Google Scholar 

  • Vavourakis V, Papaharilaou Y, Ekaterinaris J (2011) Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J Biomech 44(13):2453–2460

    Article  Google Scholar 

  • Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796

    Article  MathSciNet  MATH  Google Scholar 

  • Watton PN, Selimovic A, Raberger NB, Huang P, Holzapfel GA, Ventikos Y (2011) Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech Model Mechanobiol 10(1):109–132

    Article  Google Scholar 

  • Wu Y, Cai XC (2014) A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J Comput Phys 258:524–537

  • Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37:989–1000

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Brazilian agencies CNPq and FAPERJ. The support of these agencies is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo D. Ares.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Basic relations

Consider a displacement field \(\mathbf {u}_\mathrm{m}\) which is perturbed producing \(\mathbf {u}_{m,\tau }=\mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m}\). With this perturbation we have the deformation gradient, originally given by \(\mathbf {F}_\mathrm{m}=\mathbf {I}+\nabla _\mathrm{m}\mathbf {u}_\mathrm{m}\), results in \(\mathbf {F}_{m,\tau }=\mathbf {I}\,+\,\nabla _\mathrm{m}\mathbf {u}_{m,\tau }=\mathbf {I}\,+\,\nabla _\mathrm{m}\left( \mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m}\right) \). Let us compute the expressions of the derivatives of several quantities involving \(\mathbf {F}_{m,\tau }\), with respect to \(\tau \). This will be employed in the linearization procedures whenever the material configuration is known. Then, we have

$$\begin{aligned} \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {F}_{m,\tau }\right| _{\tau =0}= & {} \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}=\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) _\mathrm{m}\mathbf {F}_\mathrm{m}, \end{aligned}$$
(45)
$$\begin{aligned} \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {F}_{m,\tau }^{-1}\right| _{\tau =0}= & {} -\mathbf {F}_\mathrm{m}^{-1}\left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \mathbf {F}_\mathrm{m}^{-1}\nonumber \\= & {} -\mathbf {F}_\mathrm{m}^{-1}\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) _\mathrm{m}, \end{aligned}$$
(46)
$$\begin{aligned} \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\det \mathbf {F}_{m,\tau }\right| _{\tau =0}= & {} \det \mathbf {F}_\mathrm{m}(\mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})\nonumber \\= & {} \det \mathbf {F}_\mathrm{m}(\hbox { div }_\mathrm{s}\delta \mathbf {u}_\mathrm{s})_\mathrm{m}, \end{aligned}$$
(47)
$$\begin{aligned} \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {E}_{m,\tau }\right| _{\tau =0}= & {} (\mathbf {F}_\mathrm{m}^{T}(\nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}))^{S}\nonumber \\= & {} \mathbf {F}_\mathrm{m}^{T}\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) _\mathrm{m}^{S}\mathbf {F}_\mathrm{m}. \end{aligned}$$
(48)
$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\tau }\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| \bigg |_{\tau =0}=\frac{\mathrm{d}}{\mathrm{d}\tau }\sqrt{\mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\cdot \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}}\bigg |_{\tau =0}\nonumber \\&\quad =\frac{1}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\left( -\mathbf {F}_\mathrm{m}^{-T}\left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\mathbf {F}_\mathrm{m}^{-T}\right) \mathbf {n}_{0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\nonumber \\&\quad =-\left[ \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right] _\mathrm{m}\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| \end{aligned}$$
(49)
$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\tau }\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| ^{-1}\bigg |_{\tau =0}\nonumber \\&\quad =-\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| ^{-3}\left( -\mathbf {F}_\mathrm{m}^{-T}\left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\mathbf {F}_\mathrm{m}^{-T}\right) \mathbf {n}_{0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\nonumber \\&\quad =\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| ^{-1}\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) _\mathrm{m}^{T}\left( \mathbf {n}_\mathrm{s}\right) _\mathrm{m}\cdot \left( \mathbf {n}_\mathrm{s}\right) _\mathrm{m}\end{aligned}$$
(50)
$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\tau }\frac{\mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\bigg |_{\tau =0}=-(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})_\mathrm{m}^{T}\frac{\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\nonumber \\&\qquad +\frac{\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| ^{2}}\frac{(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})_\mathrm{m}\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\nonumber \\&\quad = -\left[ \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\right] _\mathrm{m}+\left[ \left[ \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right] \mathbf {n}_\mathrm{s}\right] _\mathrm{m}\nonumber \\&\quad = +\left\{ \left[ -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}+\left( \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right) \mathbf {I}\right] \mathbf {n}_\mathrm{s}\right\} _\mathrm{m} \end{aligned}$$
(51)

Now, consider the displacement field \(\mathbf {u}_\mathrm{s}\) which is perturbed producing \(\mathbf {u}_{s,\tau }=\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s}\). Then \(\mathbf {F}_\mathrm{s}^{-1}=\mathbf {I}-\nabla _\mathrm{s}\mathbf {u}_\mathrm{s}\) results in \(\mathbf {F}_{s,\tau }^{-1}=\mathbf {I}-\nabla _\mathrm{s}\mathbf {u}_{s,\tau }=\mathbf {I}-\nabla _\mathrm{s}\left( \mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s}\right) \). The derivatives of several quantities involving \(\mathbf {F}_{s,\tau }\) with respect to \(\tau \) are

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {F}_{s,\tau }^{-1}\right| _{\tau =0}=-\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}, \end{aligned}$$
(52)
$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {F}_{s,\tau }\right| _{\tau =0}=\mathbf {F}_\mathrm{s}\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \mathbf {F}_\mathrm{s},\end{aligned}$$
(53)
$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\det \mathbf {F}_{s,\tau }\right| _{\tau =0}=\det \mathbf {F}_\mathrm{s}\left( \mathbf {F}_\mathrm{s}^{T}\cdot \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ,\end{aligned}$$
(54)
$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\mathbf {E}_{s,\tau }\right| _{\tau =0}=\mathbf {F}_\mathrm{s}^{T}(\mathbf {F}_\mathrm{s}(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}))^{S}\mathbf {F}_\mathrm{s}. \end{aligned}$$
(55)

Appendix 2: Linearization procedures

1.1 Solid preload problem

For the preload problem is presented the linearization of the variational expressions (7)–(8). We recall that for this case \(\varOmega _\mathrm{s}\) is fixed and for each Newton–Raphson iteration a new material configuration \(\varOmega _\mathrm{m}^{k}\) is obtained, with points \(\mathbf {x}_\mathrm{m}^{k}=\mathbf {x}_\mathrm{s}-\mathbf {u}_\mathrm{s}^{k}\). In compact form the Problem 1 reads: find \(\left( \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}\right) \in {\mathcal {V}}_\mathrm{s}\times {\mathcal {L}}_\mathrm{s}\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s},\lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}=0 &{} \quad \forall \hat{\mathbf {u}}_\mathrm{s}\in {\mathcal {V}}_\mathrm{s}\\ \langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}}=0 &{} \quad \forall \hat{\lambda }_s\in {\mathcal {L}}_\mathrm{s} \end{array}\right. } \end{aligned}$$
(56)

The Newton–Raphson linearization applied to the above expression at the point \(\left( \mathbf {u}_\mathrm{s}^{k},\lambda _\mathrm{s}^{k}\right) \in {\mathcal {U}}_\mathrm{s}\times {\mathcal {L}}_\mathrm{s}\) and the increment/perturbation \(\left( \delta \mathbf {u}_\mathrm{s},\delta \lambda _\mathrm{s}\right) \in {\mathcal {V}}_\mathrm{s}\times {\mathcal {L}}_\mathrm{s}\) gives:

$$\begin{aligned}&\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}^k,\lambda _\mathrm{s}^k),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\nonumber \\&\quad +\,\frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}^k+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}^k+\tau \delta \lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\bigg |_{\tau =0}=0\quad \forall \hat{\mathbf {u}}_\mathrm{s}\in {\mathcal {V}}_\mathrm{s} \end{aligned}$$
(57)
$$\begin{aligned}&\langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}^k),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}}\nonumber \\&\quad +\,\frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}^k+\tau \delta \mathbf {u}_\mathrm{s}),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}}\bigg |_{\tau =0}=0\quad \forall \hat{\lambda }_s\in {\mathcal {L}}_\mathrm{s} \end{aligned}$$
(58)

As shown in Appendix 1, to denote the presence of the perturbation \((\tau \delta \mathbf {u}_\mathrm{s})\) into the quantities that depend on \(\mathbf {u}_\mathrm{s}\), we introduce the additional index \(\tau \), i.e., \(\mathbf {F}_\mathrm{s}^{-1}=\mathbf {I}-\nabla _\mathrm{s}\mathbf {u}_\mathrm{s}\) results in \(\mathbf {F}_{s,\tau }^{-1}=\mathbf {I}-\nabla _\mathrm{s}\mathbf {u}_{s,\tau }=\mathbf {I}-\nabla _\mathrm{s}\left( \mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s}\right) \). For the sake of clarity, we omit index k on the fields \(\mathbf {u}_s\) and \(\lambda _s\) (and also on quantities that are updated at each iteration such as \(\mathbf {F}_s\)) on the further developments. Analyzing the expanded expression for the perturbed residual in the material configuration, contribution of the second term of Eq. (57), takes the form

$$\begin{aligned}&\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}+\tau \delta \lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{s}}\left[ -\left( \lambda _\mathrm{s}+\tau \delta \lambda _\mathrm{s}\right) \text {div}\hat{\mathbf {u}}_\mathrm{s}+\varvec{\sigma }_{s,\tau }\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})\right] \, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}-{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}t_\mathrm{s}^{W,n}\mathbf {n}_\mathrm{s}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -\int \limits _{\partial \varOmega _\mathrm{s}^{N}}\mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{N}\quad \forall \hat{\mathbf {u}}_\mathrm{s}\in {\mathcal {V}}_\mathrm{s}, \end{aligned}$$
(59)

where the perturbated expression for the Cauchy stress tensor \(\varvec{\sigma }_{s,\tau }\) reads

$$\begin{aligned} \varvec{\sigma }_{s,\tau }=\left( \frac{1}{\det \mathbf {F}_{s,\tau }}\mathbf {F}_{s,\tau }\mathbf {S}_{s,\tau }\mathbf {F}_{s,\tau }^{T}\right) . \end{aligned}$$
(60)

Analogously, for the second term of (58) , the perturbated residuals is written as

$$\begin{aligned} \langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s}),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}} ={\displaystyle \int \limits _{\varOmega _\mathrm{s}}}[1-\det \mathbf {F}_{s,\tau }^{-1}]\hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s}=0\quad \forall \hat{\lambda }_s\in {\mathcal {L}}_\mathrm{s}.\nonumber \\ \end{aligned}$$
(61)

Using Eqs. (52)–(55) from “Appendix 1”, we obtain the derivatives of the perturbed equations

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}+\tau \delta \lambda _s),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\bigg |_{\tau =0}\nonumber \\&\quad = -\int \limits _{\varOmega _\mathrm{s}}\left( \mathbf {F}_\mathrm{s}^{T}\cdot \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \varvec{\sigma }_\mathrm{s}\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{s}}2(\mathbf {F}_\mathrm{s}(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})\varvec{\sigma }_\mathrm{s})\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{s}}\mathbf {D}_\mathrm{s}(\mathbf {F}_\mathrm{s}\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})^{S}\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad -\int \limits _{\varOmega _\mathrm{s}}\delta \lambda _\mathrm{s}\text {div}\hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\varOmega _\mathrm{s}, \end{aligned}$$
(62)

and

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s}),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}}\bigg |_{\tau =0}=-\int \limits _{\varOmega _\mathrm{s}}\left( \mathbf {F}_\mathrm{s}^{T}\cdot \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s} \nonumber \\ \end{aligned}$$
(63)

where S denotes the symmetric part, and \(\mathbf {D}_\mathrm{s}(\mathbf {F}_\mathrm{s}\nabla _{{s}}\delta \mathbf {u}_\mathrm{s})^{S}\) stands for

$$\begin{aligned} \mathbf {D}_\mathrm{s}(\mathbf {F}_\mathrm{s}\nabla _{{s}}\delta \mathbf {u}_\mathrm{s})^{S} =\frac{1}{\det \mathbf {F}_\mathrm{s}}\mathbf {F}_\mathrm{s}\left[ \left( \frac{\partial \mathbf {S}_\mathrm{m}}{\partial \mathbf {E}_\mathrm{m}}\right) _\mathrm{s}\mathbf {F}_\mathrm{s}^{T}(\mathbf {F}_\mathrm{s}\nabla _{{s}}\delta \mathbf {u}_\mathrm{s})^{\mathcal {S}}\mathbf {F}_\mathrm{s}\right] \mathbf {F}_\mathrm{s}^{T}.\nonumber \\ \end{aligned}$$
(64)

Then, \(\mathbf {D}_\mathrm{s}\) is a fourth-order tensor, whose components in a Cartesian system are given by

$$\begin{aligned} \left[ \mathbf {D}_\mathrm{s}\right] _{ijkl}= \frac{1}{\text {det }\mathbf {F}_\mathrm{s}}\left[ \mathbf {F}_\mathrm{s}\right] _{ia}\left[ \mathbf {F}_\mathrm{s}\right] _{jb}\left[ \mathbf {F}_\mathrm{s}\right] _{kc}\left[ \mathbf {F}_\mathrm{s}\right] _{ld}\left[ \left( \frac{\partial \mathbf {S}_\mathrm{m}}{\partial \mathbf {E}_\mathrm{m}}\right) _\mathrm{s}\right] _{abcd}. \nonumber \\ \end{aligned}$$
(65)

Collecting Eqs. (62) and (63) we can now formulate the linearized problem: given \(\left( \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}\right) \) (displacement and pressure fields on the previous iteration—omitted k index) find \(\left( \delta \mathbf {u}_\mathrm{s},\delta \lambda _\mathrm{s}\right) \in {\mathcal {V}}_\mathrm{s}\times {\mathcal {L}}_\mathrm{s}\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} d_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})+e_\mathrm{s}(\delta \lambda _\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})=g_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s}) &{} \forall \hat{\mathbf {u}}_\mathrm{s}\in {\mathcal {V}}_\mathrm{s}\\ f_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\lambda }_s)=h_\mathrm{s}\left( \hat{\lambda }_s\right) &{} \forall \hat{\lambda }_s\in {\mathcal {L}}_\mathrm{s} \end{array}\right. } \end{aligned}$$
(66)

with

$$\begin{aligned} d_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})= & {} -\int \limits _{\varOmega _\mathrm{s}}\left( \mathbf {F}_\mathrm{s}^{T}\cdot \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \varvec{\sigma }_\mathrm{s}\cdot \varvec{\varepsilon }_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&+\int \limits _{\varOmega _\mathrm{s}}2(\mathbf {F}_\mathrm{s}(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})\varvec{\sigma }_\mathrm{s})\cdot \varvec{\varepsilon }_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&+\int \limits _{\varOmega _\mathrm{s}}\mathbf {D}_\mathrm{s}(\mathbf {F}_\mathrm{s}\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})^{S}\cdot \varvec{\varepsilon }_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s},\end{aligned}$$
(67)
$$\begin{aligned} e_\mathrm{s}(\delta \lambda _\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})= & {} -\int \limits _{\varOmega _\mathrm{s}}\delta \lambda _\mathrm{s}\hbox { div }\hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\varOmega _\mathrm{s}, \end{aligned}$$
(68)
$$\begin{aligned} g_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s})= & {} -\int \limits _{\varOmega _\mathrm{s}}\left[ -\lambda _\mathrm{s}\hbox { div }\hat{\mathbf {u}}_\mathrm{s}+\varvec{\sigma }_\mathrm{s}\cdot \varvec{\varepsilon }_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s})\right] \, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&+{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}+{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}t_\mathrm{s}^{W,n}\mathbf {n}_\mathrm{s}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&+\int \limits _{\partial \varOmega _\mathrm{s}^{N}}\mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{N} \end{aligned}$$
(69)
$$\begin{aligned} f_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\lambda }_s)= & {} -\int \limits _{\varOmega _\mathrm{s}}\left( \mathbf {F}_\mathrm{s}^{T}\cdot \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s} \end{aligned}$$
(70)
$$\begin{aligned} h_\mathrm{s}\left( \hat{\lambda }_s\right) =-{\displaystyle \int \limits _{\varOmega _\mathrm{s}}}[1-\det \mathbf {F}_\mathrm{s}^{-1}]\hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s} \end{aligned}$$
(71)

1.2 Solid direct problem

In this case the linearization of the variational expressions (10)–(11) is carried out taking into account that the material configuration \(\varOmega _\mathrm{m}\) is fixed. In abstract form the above expressions reads: find \((\mathbf {u}_\mathrm{m},\lambda _\mathrm{m})\in {\mathcal {U}}_\mathrm{m}\times {\mathcal {L}}_\mathrm{m}\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m},\lambda _\mathrm{m}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}=0 &{} \quad \forall \hat{\mathbf {u}}_\mathrm{m}\in {\mathcal {V}}_\mathrm{m}\\ \langle {\mathcal {J}}_\mathrm{m}(\mathbf {u}_\mathrm{m}),\hat{\lambda }_m\rangle _{\varOmega _\mathrm{m}}=0 &{} \quad \forall \hat{\lambda }_m\in {\mathcal {L}}_\mathrm{m} \end{array}\right. } \end{aligned}$$
(72)

The Newton–Raphson linearization applied to the above expression at the point \((\mathbf {u}_\mathrm{m}^{k},\lambda _\mathrm{m}^{k})\in {\mathcal {U}}_\mathrm{m}\times {\mathcal {L}}_\mathrm{m}\) and the increment/perturbation \((\delta \mathbf {u}_\mathrm{m},\delta \lambda _\mathrm{m})\) \(\in {\mathcal {V}}_\mathrm{m}\times {\mathcal {L}}_\mathrm{m}\) gives:

$$\begin{aligned}&\langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m}^{k},\lambda _\mathrm{m}^{k}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\nonumber \\&\qquad +\,\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m}^{k}+\tau \delta \mathbf {u}_\mathrm{m},\lambda _\mathrm{m}^{k}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}\nonumber \\&\qquad +\,\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m}^{k},\lambda _\mathrm{m}^{k}+\tau \delta \lambda ),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}\nonumber \\&\qquad =0\quad \forall \hat{\mathbf {u}}_\mathrm{m}\in {\mathcal {V}}_\mathrm{m} \end{aligned}$$
(73)
$$\begin{aligned}&\langle {\mathcal {J}}_\mathrm{m}(\mathbf {u}_\mathrm{m}^{k}),\hat{\lambda }_m\rangle _{\varOmega _\mathrm{m}}\nonumber \\&\quad +\,\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \langle {\mathcal {J}}_\mathrm{m}(\mathbf {u}_\mathrm{m}^{k}+\tau \delta \mathbf {u}_\mathrm{m}),\hat{\lambda }_m\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}=0\quad \forall \hat{\lambda }_m\in {\mathcal {L}}_\mathrm{m} \nonumber \\ \end{aligned}$$
(74)

As shown in “Appendix 1”, to denote the presence of the perturbation \(\left( \tau \delta \mathbf {u}_\mathrm{m}\right) \) into the quantities that depend on \(\mathbf {u}\), we introduce the additional index \(\tau \), i.e., \(\mathbf {F}_{m,\tau }=\mathbf {I}+\nabla _\mathrm{m}\left( \mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m}\right) =\mathbf {F}_\mathrm{m}+\tau \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\). As before, we omit index k indicating quantities evaluated at the previous iteration. Analyzing the expanded expression for the perturbed residual in the material configuration, contribution of the second term of Eq. (73), takes the form

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m},\lambda _\mathrm{m}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}\nonumber \\&\quad = -\int \limits _{\varOmega _\mathrm{m}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left[ \lambda _\mathrm{m}\left( \mathbf {F}_{m,\tau }^{-T}\cdot \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_{m,\tau }\right] \bigg |_{\tau =0}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{m}}\frac{\mathrm{d}}{\mathrm{d}\tau }[\mathbf {S}_\mathrm{m}(\mathbf {E}_{m,\tau })\cdot \dot{\mathbf {E}}_{\tau }(\hat{\mathbf {u}}_\mathrm{m})]\bigg |_{\tau =0}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( t_\mathrm{m}^{W,n}\mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_{m,\tau }\right| _{\tau =0}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {P}_{m,\tau }\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_{m,\tau }\right| _{\tau =0}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_{m,\tau }\right| _{\tau =0}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{N},\nonumber \\ \end{aligned}$$
(75)

where \(\dot{\mathbf {E}}_{\tau }(\hat{\mathbf {u}}_\mathrm{m})=\frac{1}{2}[\mathbf {F}_{m,\tau }^{T}(\nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m})+(\nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m})^{T}\mathbf {F}_{m,\tau }]\). Using Eqs. (45)–(51) detailed in “Appendix 1” to perform the derivation with respect to \(\tau \) (and evaluate at \(\tau =0\)) the following expression is obtained

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m},\lambda _\mathrm{m}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{m}}\lambda _\mathrm{m}\left[ \left( \mathbf {F}_\mathrm{m}^{-T}(\nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})^{T}\mathbf {F}_\mathrm{m}^{-T}\right) \cdot (\nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m})\right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad -\int \limits _{\varOmega _\mathrm{m}}\lambda _\mathrm{m}\left[ \left( \mathbf {F}_\mathrm{m}^{-T}\cdot (\nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})\right) \left( \mathbf {F}_\mathrm{m}^{-T}\cdot (\nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m})\right) \right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{m}}\left( \frac{\partial \mathbf {S}_\mathrm{m}}{\partial \mathbf {E}_\mathrm{m}}((\nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})^{T}\mathbf {F}_\mathrm{m})^{S}\right) \cdot \dot{\mathbf {E}}\left( \hat{\mathbf {u}}_\mathrm{m}\right) \, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{m}}\mathbf {S}_\mathrm{m}(\mathbf {E}_\mathrm{m})\cdot ((\nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})^{T}(\nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}))^{S}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left( t_\mathrm{m}^{W,n}\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left[ t_\mathrm{m}^{W,n}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right) \right| _{\tau =0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {P}_{m,\tau }\right| _{\tau =0}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{m}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{m}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\frac{\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| _{\tau =0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{N}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \frac{\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right) \right| _{\tau =0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| }\det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{N}\nonumber \\ \end{aligned}$$
(76)

where \(\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| _{\tau =0}=\left( -\mathbf {F}_\mathrm{m}^{-T}\left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\mathbf {F}_\mathrm{m}^{-T}\right) \mathbf {n}_{0}\) and

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {P}_{m,\tau }\right| _{\tau =0}=\left[ \frac{\mathrm{d}}{\mathrm{d}\tau }\frac{\mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\bigg |_{\tau =0}\otimes \frac{\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\right] ^{S}, \end{aligned}$$

with \(\frac{\mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\bigg |_{\tau =0}\) given by expression (51) provided in “Appendix 1”. Similarly, for the contribution of the third term of (73), a perturbation \((\tau \delta \lambda _\mathrm{m})\) is introduced, and the expression is derived. The calculation of this block is straightforward since \(\langle {\mathcal {R}}_\mathrm{m},\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\) is linear in \(\lambda _\mathrm{m}\), then

$$\begin{aligned}&{\displaystyle \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{m}(\mathbf {u}_\mathrm{m},\lambda _\mathrm{m}+\tau \delta \lambda _\mathrm{m}),\hat{\mathbf {u}}_\mathrm{m}\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}}\nonumber \\&\quad = -{\displaystyle \int \limits _{\varOmega _\mathrm{m}}}\delta \lambda _\mathrm{m}\left( \mathbf {F}_\mathrm{m}^{-T}\cdot \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}. \end{aligned}$$
(77)

Finally, the second term of (74) evaluated at \(\tau =0\) yields

$$\begin{aligned}&{\displaystyle \left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {J}}_\mathrm{m}(\mathbf {u}_\mathrm{m}+\tau \delta \mathbf {u}_\mathrm{m}),\hat{\lambda }_m\rangle _{\varOmega _\mathrm{m}}\right| _{\tau =0}}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{m}}\det \mathbf {F}_\mathrm{m}(\mathbf {F}_\mathrm{m}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m})\hat{\lambda }_m\, \mathrm{d}\varOmega _\mathrm{m}. \end{aligned}$$
(78)

With these blocks we are able to write the linear problem: given \((\mathbf {u}_\mathrm{m},\lambda _\mathrm{m})\) (displacement and pressure fields at previous iteration—omitted k index), find \(\left( \delta \mathbf {u}_\mathrm{m},\delta \lambda _\mathrm{m}\right) \in {\mathcal {V}}_\mathrm{m}\times {\mathcal {L}}_\mathrm{m}\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} a_m\left( \delta \mathbf {u}_\mathrm{m},\hat{\mathbf {u}}_\mathrm{m}\right) + b_m\left( \delta \lambda _\mathrm{m},\hat{\mathbf {u}}_\mathrm{m}\right) =l_m\left( \hat{\mathbf {u}}_\mathrm{m}\right) &{} \forall \hat{\mathbf {u}}_\mathrm{m}\in {\mathcal {V}}_m\\ c_m\left( \delta \mathbf {u}_\mathrm{m},\hat{\lambda }_m\right) =m_m\left( \hat{\lambda }_m\right) &{} \forall \hat{\lambda }_m\in {\mathcal {L}}_m \end{array}\right. } \end{aligned}$$
(79)

where the linear and bilinear forms are obtained through

$$\begin{aligned}&l_m\left( \hat{\mathbf {u}}_\mathrm{m}\right) ={\displaystyle \int \limits _{\varOmega _\mathrm{m}}}\lambda _\mathrm{m}\left( \mathbf {F}_\mathrm{m}^{-T}\cdot \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\quad -{\displaystyle \int \limits _{\varOmega _\mathrm{m}}}\left( \varvec{\Sigma }_\mathrm{m}^{R}+\mathbf {S}_\mathrm{m}\left( \mathbf {E}_\mathrm{m}\right) \right) \cdot \dot{\mathbf {E}}\left( \hat{\mathbf {u}}_\mathrm{m}\right) \, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\quad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left( t_\mathrm{m}^{W,n}\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\quad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{m}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\frac{\det \mathbf {F}_\mathrm{m}}{\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| }\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\quad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{N}, \end{aligned}$$
(80)
$$\begin{aligned}&a_m\left( \left( \delta \mathbf {u}_\mathrm{m},\delta \lambda _\mathrm{m}\right) ,\hat{\mathbf {u}}_\mathrm{m}\right) \nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{m}}\lambda _\mathrm{m}\left[ \left( \mathbf {F}_\mathrm{m}^{-T}\left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\mathbf {F}_\mathrm{m}^{-T}\right) \cdot \left( \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad -\int \limits _{\varOmega _\mathrm{m}}\lambda _\mathrm{m}\left[ \left( \mathbf {F}_\mathrm{m}^{-T}\cdot \left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \right) \left( \mathbf {F}_\mathrm{m}^{-T}\cdot \left( \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \right) \right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{m}}\left( \frac{\partial \mathbf {S}_\mathrm{m}}{\partial \mathbf {E}_\mathrm{m}}\left( \left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\mathbf {F}_\mathrm{m}\right) ^{S}\right) \cdot \dot{\mathbf {E}}\left( \hat{\mathbf {u}}_\mathrm{m}\right) \, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{m}}\mathbf {S}_\mathrm{m}\left( \mathbf {E}_\mathrm{m}\right) \cdot \left( \left( \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) ^{T}\left( \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \right) ^{S}\, \mathrm{d}\varOmega _\mathrm{m}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left( t_\mathrm{m}^{W,n}\mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left[ t_\mathrm{m}^{W,n}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right) \right| _{\tau =0}\cdot \hat{\mathbf {u}}_\mathrm{m}\right] \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {P}_{m,\tau }\right| _{\tau =0}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{m}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{m}\mathbf {t}_\mathrm{m}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{m}\frac{\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| _{\tau =0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right| }\det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| \det \mathbf {F}_\mathrm{m}\left( \mathbf {F}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \, \mathrm{d}\partial \varOmega _\mathrm{m}^{N}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{N}}}\left( \mathbf {t}_\mathrm{m}^{N}\cdot \hat{\mathbf {u}}_\mathrm{m}\right) \frac{\frac{\mathrm{d}}{\mathrm{d}\tau }\left. \left( \mathbf {F}_{m,\tau }^{-T}\mathbf {n}_{0}\right) \right| _{\tau =0}\cdot \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}}{\left| \mathbf {F}_\mathrm{m}^{-T}\mathbf {n}_{0}\right| }\det \mathbf {F}_\mathrm{m}\, \mathrm{d}\partial \varOmega _\mathrm{m}^{N},\end{aligned}$$
(81)
$$\begin{aligned}&b_m\left( \delta \lambda _\mathrm{m},\hat{\mathbf {u}}_\mathrm{m}\right) = -{\displaystyle \int \limits _{\varOmega _\mathrm{m}}}\delta \lambda _\mathrm{m}\left( \mathbf {F}_\mathrm{m}^{-T}\cdot \nabla _\mathrm{m}\hat{\mathbf {u}}_\mathrm{m}\right) \det \mathbf {F}_\mathrm{m}\, \mathrm{d}\varOmega _\mathrm{m},\end{aligned}$$
(82)
$$\begin{aligned}&c_m\left( \delta \mathbf {u}_\mathrm{m},\hat{\lambda }_m\right) =\int \limits _{\varOmega _\mathrm{m}}\det \mathbf {F}_\mathrm{m}\left( \mathbf {F}_\mathrm{m}^{-T}\cdot \nabla _\mathrm{m}\delta \mathbf {u}_\mathrm{m}\right) \hat{\lambda }_m\, \mathrm{d}\varOmega _\mathrm{m}, \end{aligned}$$
(83)

and

$$\begin{aligned} m_m\left( \hat{\lambda }_m\right) =-\int \limits _{\varOmega _\mathrm{m}}\left( \det \mathbf {F}_\mathrm{m}-1\right) \hat{\lambda }_m\, \mathrm{d}\varOmega _\mathrm{m} \end{aligned}$$
(84)

The above linear problem is convenient to be rewritten (evaluated) in terms of the variables now defined in an updated configuration \(\varOmega _\mathrm{s}^{k}\) (written as \(\varOmega _\mathrm{s}\) for sake of simplicity), with points \(x_\mathrm{s}^{k}=x_\mathrm{m}+u_\mathrm{m}^{k}\). To do that as a first step we seek for the spatial expression of the tangent components. With the expressions provided in “Appendix 1” in mind, we can write the spatial version of (76) as

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}^{k}+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\right| _{\tau =0}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{s}}\lambda _\mathrm{s}((\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})^{T}\cdot (\nabla _\mathrm{s}\hat{\mathbf {u}}_\mathrm{s})-(\text {div}\delta \mathbf {u}_\mathrm{s})(\text {div}\hat{\mathbf {u}}_\mathrm{s}))\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{s}}(\mathbf {D}_\mathrm{s}\varvec{\varepsilon }(\delta \mathbf {u}_\mathrm{s})\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})+(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})\varvec{\sigma }_\mathrm{s}\cdot (\nabla _\mathrm{s}\hat{\mathbf {u}}_\mathrm{s}))\, \mathrm{d}\varOmega _\mathrm{s},\nonumber \\&\qquad {\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left[ t_\mathrm{s}^{W,n}\left( \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}-\mathbf {I}\right) \mathbf {n}_\mathrm{s}\cdot \hat{\mathbf {u}}_\mathrm{s}\right] \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\left( \mathbf {H}\left( \delta \mathbf {u}_\mathrm{s}\right) \mathbf {n}_\mathrm{s}\otimes \mathbf {n}_\mathrm{s}\right) ^{S}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{N}}}\left( \mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\right) \left[ \left( \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right] \, \mathrm{d}\partial \varOmega _\mathrm{s}^{N}\nonumber \\ \end{aligned}$$
(85)

where \(\mathbf {H}\left( \delta \mathbf {u}_\mathrm{s}\right) \) stands for

$$\begin{aligned} \mathbf {H}\left( \delta \mathbf {u}_\mathrm{s}\right) = \left[ -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}+\left( \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right) \mathbf {I}\right] , \end{aligned}$$
(86)

and recalling (65), \(\mathbf {D}_\mathrm{s}\varvec{\varepsilon }_\mathrm{s}(\delta \mathbf {u}_\mathrm{s})\) is given by

$$\begin{aligned} \mathbf {D}_\mathrm{s}\varvec{\varepsilon }_\mathrm{s}(\delta \mathbf {u}_\mathrm{s})= \frac{1}{\det \mathbf {F}_\mathrm{s}}\mathbf {F}_\mathrm{s}\left[ \left( \frac{\partial \mathbf {S}_\mathrm{m}}{\partial \mathbf {E}_\mathrm{m}}\right) _\mathrm{s}\mathbf {F}_\mathrm{s}^{T}\varvec{\varepsilon }(\delta \mathbf {u}_\mathrm{s})\mathbf {F}_\mathrm{s}\right] \mathbf {F}_\mathrm{s}^{T}. \end{aligned}$$
(87)

Now we add and subtract the term \(\lambda _\mathrm{s}(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})\cdot (\nabla _\mathrm{s}\hat{\mathbf {u}}_\mathrm{s})\) into Eq. (85) and consider the operation with second order tensors

$$\begin{aligned} \lambda _\mathrm{s}(\hbox { div }\delta \mathbf {u}_\mathrm{s})(\hbox { div }\hat{\mathbf {u}}_\mathrm{s})=\lambda _\mathrm{s}(\mathbf {I}\otimes \mathbf {I})\varvec{\varepsilon }(\delta \mathbf {u}_\mathrm{s})\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s}), \end{aligned}$$
(88)

leading to

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\right| _{\tau =0}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{s}}(\mathbf {D}_\mathrm{s}+\lambda _\mathrm{s}(2{\mathbb {I}}-(\mathbf {I}\otimes \mathbf {I})))\varvec{\varepsilon }(\delta \mathbf {u}_\mathrm{s})\cdot \varvec{\varepsilon }(\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\quad +\int \limits _{\varOmega _\mathrm{s}}(\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})\varvec{\sigma }_\mathrm{s}\cdot (\nabla _\mathrm{s}\hat{\mathbf {u}}_\mathrm{s})\, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\quad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\left[ t_\mathrm{s}^{W,n}\left( \left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}-\mathbf {I}\right) \mathbf {n}_\mathrm{s}\cdot \hat{\mathbf {u}}_\mathrm{s}\right] \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\quad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\left( \mathbf {H}\left( \delta \mathbf {u}_\mathrm{s}\right) \mathbf {n}_\mathrm{s}\otimes \mathbf {n}_\mathrm{s}\right) ^{S}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\quad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\quad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\quad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{N}}}\left( \mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\right) \left[ \left( \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right] \, \mathrm{d}\partial \varOmega _\mathrm{s}^{N}\nonumber \\ \end{aligned}$$
(89)

where \({\mathbb {I}}\) and \(\mathbf {I}\) are the fourth and second order identity tensors, respectively. Analogously, the spatial expressions (77) and (78) result in

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {R}}_\mathrm{s}(\mathbf {u}_\mathrm{s},\lambda _\mathrm{s}+\tau \delta \lambda _\mathrm{s}),\hat{\mathbf {u}}_\mathrm{s}\rangle _{\varOmega _\mathrm{s}}\right| _{\tau =0}\nonumber \\&\quad = -\int \limits _{\varOmega _\mathrm{s}}\delta \lambda _\mathrm{s}\hbox { div }\hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\varOmega _\mathrm{s}, \end{aligned}$$
(90)

and

$$\begin{aligned}&\left. \frac{\mathrm{d}}{\mathrm{d}\tau }\langle {\mathcal {J}}_\mathrm{s}(\mathbf {u}_\mathrm{s}+\tau \delta \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}),\hat{\lambda }_s\rangle _{\varOmega _\mathrm{s}}\right| _{\tau =0}\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{s}}\hbox { div }\delta \mathbf {u}_\mathrm{s}\hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s}. \end{aligned}$$
(91)

Hence, from Eqs. (85), (90) and (91), the spatial form of the linearized problem for incompressible materials is formulated as follows: given \(\left( \mathbf {u}_\mathrm{s},\lambda _\mathrm{s}\right) \) (displacement and pressure fields at previous Newton–Raphson iteration-omitted k index-) find \(\left( \delta \mathbf {u}_\mathrm{s},\delta \lambda _\mathrm{s}\right) \in {\mathcal {V}}_\mathrm{s}\times {\mathcal {L}}_\mathrm{s}\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} a_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})+b_\mathrm{s}(\delta \lambda _\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})=l_\mathrm{s}(\hat{\mathbf {u}}_\mathrm{s}) &{} \forall \hat{\mathbf {u}}_\mathrm{s}\in {\mathcal {V}}_\mathrm{s}\\ c_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\lambda }_s)=m_\mathrm{s}(\hat{\lambda }_s) &{} \forall \hat{\lambda }_s\in {\mathcal {L}}_\mathrm{s} \end{array}\right. } \end{aligned}$$
(92)

where the bilinear and linear forms are given by

$$\begin{aligned}&a_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})\nonumber \\&\quad =\int \limits _{\varOmega _\mathrm{s}}\left[ \mathbf {D}_\mathrm{s}+\lambda _\mathrm{s}\left( 2{\mathbb {I}}-\left( \mathbf {I}\otimes \mathbf {I}\right) \right) \right] \varvec{\varepsilon }\left( \delta \mathbf {u}_\mathrm{s}\right) \cdot \varvec{\varepsilon }\left( \hat{\mathbf {u}}_\mathrm{s}\right) \, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad +\int \limits _{\varOmega _\mathrm{s}}\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \varvec{\sigma }_\mathrm{s}\cdot \left( \nabla _\mathrm{s}\hat{\mathbf {u}}_\mathrm{s}\right) \, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\qquad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\left[ t_\mathrm{s}^{W,n}((\nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s})^{T}-\mathbf {I})\mathbf {n}_\mathrm{s}^{W}\cdot \hat{\mathbf {u}}_\mathrm{s}\right] {\hbox { div }_\mathrm{s}\delta \mathbf {u}_\mathrm{s}}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\left( \mathbf {H}\left( \delta \mathbf {u}_\mathrm{s}\right) \mathbf {n}_\mathrm{s}\otimes \mathbf {n}_\mathrm{s}\right) ^{S}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( \text {div}_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{m}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W,t}\cdot \hat{\mathbf {u}}_\mathrm{s}\left( -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right) \, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\qquad -{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{N}}}\left( \mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\right) \left[ \left( \hbox { div }_\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) -\left( \nabla _\mathrm{s}\delta \mathbf {u}_\mathrm{s}\right) ^{T}\mathbf {n}_\mathrm{s}\cdot \mathbf {n}_\mathrm{s}\right] \, \mathrm{d}\partial \varOmega _\mathrm{s}^{N},\end{aligned}$$
(93)
$$\begin{aligned}&b_\mathrm{s}(\delta \lambda _\mathrm{s},\hat{\mathbf {u}}_\mathrm{s})=-\int \limits _{\varOmega _\mathrm{s}}\delta \lambda _\mathrm{s}\hbox { div }\hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\varOmega _\mathrm{s},\end{aligned}$$
(94)
$$\begin{aligned}&l_\mathrm{s}\left( \hat{\mathbf {u}}_\mathrm{s}\right) =-{\displaystyle \int \limits _{\varOmega _\mathrm{s}}}\left[ -\lambda _\mathrm{s}\hbox { div }\hat{\mathbf {u}}_\mathrm{s}+\varvec{\sigma }_\mathrm{s}\cdot \varvec{\varepsilon }_\mathrm{s}\left( \hat{\mathbf {u}}_\mathrm{s}\right) \right] \, \mathrm{d}\varOmega _\mathrm{s}\nonumber \\&\quad +{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}\mathbf {P}_\mathrm{s}\mathbf {t}_\mathrm{s}^{W}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}+{\displaystyle \int \limits _{\partial \varOmega _\mathrm{s}^{W}}}t_\mathrm{s}^{W,n}\mathbf {n}_\mathrm{s}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{W}\nonumber \\&\quad +\int \limits _{\partial \varOmega _\mathrm{s}^{N}}\mathbf {t}_\mathrm{s}^{N}\cdot \hat{\mathbf {u}}_\mathrm{s}\, \mathrm{d}\partial \varOmega _\mathrm{s}^{N},\end{aligned}$$
(95)
$$\begin{aligned}&c_\mathrm{s}(\delta \mathbf {u}_\mathrm{s},\hat{\lambda }_s)={\displaystyle \int \limits _{\varOmega _\mathrm{s}}}\hbox { div }\delta \hat{\mathbf {u}}_\mathrm{s}\,\hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s}, \end{aligned}$$
(96)

and

$$\begin{aligned} m_\mathrm{s}\left( \hat{\lambda }_s\right) =-{\displaystyle \int \limits _{\varOmega _\mathrm{s}}}\left( 1-\det \mathbf {F}_\mathrm{s}^{-1}\right) \hat{\lambda }_s\, \mathrm{d}\varOmega _\mathrm{s}. \end{aligned}$$
(97)

1.3 Fluid problem

In order to solve numerically the variational problem set by Eqs. (30)–(32), a fixed-point method is used where the velocity of the reference domain at each iteration is calculated as \(\mathbf {w}^{k}=\frac{\mathbf {d}^{k}-\mathbf {d}^{n}}{\Delta t}\) (other choices are perfectly viable), with superscripts k and n referring to the solution at the previous fixed-point iteration and at the previous time step, respectively. The proposed fixed-point method reads: until convergence is achieved, for every iteration \(k=0,1,\ldots \) find \(\left( \mathbf {v}^{k+1},p^{k+1},\mathbf {d}^{k+1}\right) \in {\mathcal {V}}^{k}_t\times {\mathcal {P}}^{k}_t\times {\mathcal {D}}^{k}_t\) such that

$$\begin{aligned}&\int \limits _{\varUpsilon _t^k} \rho \frac{\partial \mathbf {v}^{k+1}}{\partial t}\cdot \hat{\mathbf {v}}\, \mathrm{d}\varUpsilon _t^k +\int \limits _{\varUpsilon _t^k}\rho \nabla \mathbf {v}^{k+1}\left( \mathbf {v}^k-\mathbf {w}^k\right) \cdot \hat{\mathbf {v}}\, \mathrm{d}\varUpsilon _t^k\nonumber \\&\qquad -\int \limits _{\varUpsilon _t^k}p^{k+1}\hbox { div }\hat{\mathbf {v}}\, \mathrm{d}\varUpsilon _t^k +\int \limits _{\varUpsilon _t^k}\varvec{\bar{\sigma }}\left( \mathbf {v}^{k+1}\right) \cdot \varvec{\varepsilon }\left( \hat{\mathbf {v}}\right) \, \mathrm{d}\varUpsilon _t^k\nonumber \\&\quad =\sum _{i=1}^C \int \limits _{\partial \varUpsilon _t^{k,A,i}}t_t^i\mathbf {n}^i\cdot \hat{\mathbf {v}}\, \mathrm{d}\partial \varUpsilon _t^{ k,A,i}\quad \forall \hat{\mathbf {v}}\in {\mathcal {V}}^{k,*}_t, \end{aligned}$$
(98)
$$\begin{aligned}&\int \limits _{\varUpsilon _t^k}\hat{p}\hbox { div }\mathbf {v}^{ k+1}\, \mathrm{d}\varUpsilon _t^k=0\quad \forall \hat{p}\in {\mathcal {P}}_t^k, \end{aligned}$$
(99)
$$\begin{aligned}&\int \limits _{\varUpsilon _t^k}\nabla \mathbf {d}^{k+1}\cdot \nabla \hat{\mathbf {d}}\, \mathrm{d}\varUpsilon _t^{ k}=0\quad \forall \hat{\mathbf {d}}\in {\mathcal {D}}^{k,*}_t, \end{aligned}$$
(100)

where \({\mathcal {V}}^{k,*}_t, {\mathcal {P}}_t^k\) and \({\mathcal {D}}^{k,*}_t\) are the counterparts of \({\mathcal {V}}^{*}_t, {\mathcal {P}}_t\) and \({\mathcal {D}}^{*}_t\) but with functions defined over \(\varUpsilon _t^k\). Considering a Crank–Nicolson scheme for the time integration, the time derivative is approximated as follows

$$\begin{aligned} \frac{\partial \mathbf {v}^{k+1}}{\partial t} = \frac{\mathbf {v}^{k+1} - \mathbf {v}^n}{\Delta t}, \end{aligned}$$
(101)

and all other terms in (98), except for the coupling with the pressure field, are evaluated at \(t_{n+\frac{1}{2}}=\frac{1}{2}(t_{n+1}+t_n)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, P.J., Ares, G.D., Urquiza, S.A. et al. On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach. Biomech Model Mechanobiol 15, 593–627 (2016). https://doi.org/10.1007/s10237-015-0712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0712-y

Keywords

Navigation