Biomechanics and Modeling in Mechanobiology

, Volume 15, Issue 3, pp 525–542 | Cite as

Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation

  • Paola Causin
  • Giovanna Guidoboni
  • Francesca Malgaroli
  • Riccardo Sacco
  • Alon Harris
Original Paper

Abstract

The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen (\(\hbox {O}_2\)) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, \(\hbox {O}_2\) is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the \(\hbox {O}_2\) distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the \(\hbox {O}_2\) profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the \(\hbox {O}_2\) tension at the level of the retinal ganglion cells; and (3) arterial \(\hbox {O}_2\) permeability has a strong influence on the \(\hbox {O}_2\) saturation in the retinal arterioles.

Keywords

Retinal microcirculation Ocular blood flow mechanics  Oxygen in blood Oxygen in tissue Capillary plexi model Mass transport Multiscale model 

Abbreviations

ACV

Artero-capillary-venous

CRA

Central retinal artery

CRV

Central retinal vein

DLA

Diffusion-limited aggregation

FEM

Finite element method

FCM

Fully coupled model

IOP

Intraocular pressure

\(\hbox {O}_2\)

Oxygen

PDE

Partial differential equation

RBC

Red blood cell

VTN

Vascular tree network

1/2/3D

One/two/three-dimensional

Supplementary material

10237_2015_708_MOESM1_ESM.pdf (3.7 mb)
Supplementary material 1 (pdf 3829 KB)

References

  1. Alamouti B, Funk J (2003) Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 87(7):899–901CrossRefGoogle Scholar
  2. Alder VA, Cringle SJ (1990) Vitreal and retinal oxygenation. Graefes Arch Clin Exp Ophthalmol 228(1):151–157CrossRefGoogle Scholar
  3. Anand-Aptea B, Hollyfielda JG (2010) Developmental anatomy of the retinal and choroidal vasculature. Elsevier, ClevelandCrossRefGoogle Scholar
  4. Arai R, Kimura I, Imamura Y, Shinoda K, Matsumoto CS, Seki K, Ishida M, Murakami A, Mizota A (2014) Photoreceptor inner and outer segment layer thickness in multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 252(10):1645–1651CrossRefGoogle Scholar
  5. Arciero J, Pickrell A, Siesky BA, Harris A (2012) Theoretical analysis of myogenic and metabolic responses in retinal blood flow autoregulation. Annual meeting of the association for research in vision and ophthalmology, program 6847, Abstract D1177Google Scholar
  6. Arciero J, Harris A, Siesky B, Amireskandari A, Gershuny V, Pickrell A, Guidoboni G (2013) Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Invest Ophthalmol Vis Sci 54(8):5584–5593CrossRefGoogle Scholar
  7. Avtar R, Tandon D (2008) Mathematical modelling of intraretinal oxygen partial pressure. Trop J Pharm Res 7(4):1107–1116CrossRefGoogle Scholar
  8. Bank RE, Buergler JF, Fichtner W, Smith RK (1990) Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer Math 58(1):185–202MathSciNetCrossRefMATHGoogle Scholar
  9. Bawazir A, Gharebaghi R, Hussein A, Hitam WHW (2011) Non-arteritic anterior ischaemic optic neuropathy in Malaysia: a 5 years review. Int J Ophthalmol 4(3):272–274Google Scholar
  10. Beach JM, Schwenzer KJ, Srinnivas S, Kim D, Tiedeman JS (1999) Oxymetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J Appl Physiol 86(2):748–758Google Scholar
  11. Beard DA, Bassingthwaighte JB (2001) Mathematical modelling of intraretinal oxygen partial pressure. Ann Biomed Eng 29(4):298–310CrossRefGoogle Scholar
  12. Becker H, Polo O, McNamara S, Berthon-Jones M, Sullivan C (1996) Effect of different levels of hyperoxia on breathing in healthy subjects. J Appl Physiol 81(4):1683–1690Google Scholar
  13. Bhargava M, Ikram M, Wong T (2012) How does hypertension affect your eyes? J Hum Hypertens 26(2):71–83CrossRefGoogle Scholar
  14. Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36(3):542–554Google Scholar
  15. Čanić S, Kim EH (2003) Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math Method Appl Sci 26(14):1161–1186, ISSN 1099-1476. doi: 10.1002/mma.407
  16. Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149(5):704–712CrossRefGoogle Scholar
  17. Causin P, Malgaroli F, Zorzan F (2014) A mechano-physiological model of metabolic autoregulation in eye retinal microcirculation. In: Zannoli R, Corazza I, Stagni R (eds) Proceedings of ICMMB14 (CD-ROM)Google Scholar
  18. Charlson M, de Moraes C, Link A, Wells M, Harmon G, Peterson J, Ritch R, Liebmann J (2014) Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology 121(10):2004–2012CrossRefGoogle Scholar
  19. Cicco G, Giorgino F, Cicco S (2011) Wound healing in diabetes: hemoreological and microcirculatory aspects. In: Oxygen transport to tissue XXXII. Springer, pp 263–269Google Scholar
  20. Connolly D, Hosking S (2008) Oxygenation and gender effects on photopic frequency-doubled contrast sensitivity. Vision Res 48(2):281–288CrossRefGoogle Scholar
  21. Costa V, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92(4):e252–e266CrossRefGoogle Scholar
  22. Cringle SJ, Yu DY (2002) A multi-layer model of retinal oxygen supply and consumption helps explain the mutated rise in inner retinal \(P_{O_2}\) during systemic hyperoxia. Comp Biochem Physiol Part A Mol Integr Physiol 132(1):61–66CrossRefGoogle Scholar
  23. D’Angelo C (2007) Multiscale modelling of metabolism and transport phenomena in living tissues. Dissertation, EPFL. http://infoscience.epfl.ch/
  24. Dash RK, Bassingthwaighte JB (2010) Erratum to: Blood HBO2 and HBCO2 dissociation curves at varied O2, CO2, pH, 2, 3-DPG and temperature levels. Ann Biomed Eng 38(4):1683–1701CrossRefGoogle Scholar
  25. Dautrabande L, Haldane J (1921) The effect of respiration of oxygen on breathing and circulation. J Physiol 55:296–299CrossRefGoogle Scholar
  26. Deokule S, Weinreb R (2008) Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol 43(3):302–307CrossRefGoogle Scholar
  27. Eperon G, Johnson M, David N (1975) The effect of arterial \(\text{ PO }_2\) on relative retinal blood flow in monkeys. Invest Ophthalmol 14:342–352Google Scholar
  28. Erbertseder K, Reichold J, Flemisch B, Jenny P, Helmig R (2012) A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One 7(3):e31966CrossRefGoogle Scholar
  29. Family F, Masters R, Platt D (1989) Fractal pattern formation in human retinal vessels. Physica D 38(1–3):98–103CrossRefGoogle Scholar
  30. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system, Springer, ItalyGoogle Scholar
  31. Ganesan P, He S, Xu H (2010a) Development of an image-based network model of retinal vasculature. Ann Biomed Eng 38:1566–1585CrossRefGoogle Scholar
  32. Ganesan P, He S, Xu H (2010b) Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc Res 80(1):99–109CrossRefGoogle Scholar
  33. Ganfield R, Nair P, Whalen W (1970) Mass transfer, storage, and utilization of O2 in cat cerebral cortex. An J Physiol 219(3):814–821Google Scholar
  34. Geirsdottir A, Palsson O, Hardarson SH, Olafsdottir OB, Kristjansdottir JV, Stefánsson E (2012) Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci 53(9):5433–5442CrossRefGoogle Scholar
  35. George A, Liu J (1981) The fluid mechanics of large blood vessels. Cambridge University Press, CambridgeGoogle Scholar
  36. Gerber AL, Harris A, Siesky B, Lee E, Schaab TJ, Huck A, Amireskandari A (2014) Vascular dysfunction in diabetes and glaucoma: a complex relationship reviewed. J Glaucoma. doi:10.1097/IJG.0000000000000137
  37. Goldman D, Popel AS (2000) A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J Theor Biol 206(2):181–194CrossRefGoogle Scholar
  38. Grunwald JE, Riva CE, Baine J, Brucker AJ (1992) Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33(2):356–363Google Scholar
  39. Gugleta K, Zawinka C, Rickenbacher I, Kochkorov A, Katamay R, Flammer J, Orgul S (2006) Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 47(9):4034–4041CrossRefGoogle Scholar
  40. Guidoboni G, Harris A, Carichino L, Arieli Y, Siesky BA (2014a) Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math Biosci Eng 11(3):523–546MathSciNetCrossRefMATHGoogle Scholar
  41. Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J (2014b) Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci 55(7):4105–4118Google Scholar
  42. Hammer M, Heller T, Jentsch S, Dawczynski J, Schweitzer D, Peters S, Schmidtke K, Muller U (2012) Retinal vessel oxygen saturation under flicker light stimulation in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 53(7):4063–4068CrossRefGoogle Scholar
  43. Hardarson S, Stefánsson E (2012) Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 96:560–563CrossRefGoogle Scholar
  44. Harris A, Jonescu-Cuypers C, Kagemann L, Ciulla T, Krieglstein G (2003) Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. Butterworth-Heinemann (Elsevier), PhiladelphiaGoogle Scholar
  45. Haugh L, Linsenmeier R, Goldstick TK (1989) Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng 18(1):19–36CrossRefGoogle Scholar
  46. Hayreh S (2008) Role of retinal hypoxia in diabetic macular edema: a new concept. Graefes Arch Clin Exp Ophthalmol 246(3):356–361CrossRefGoogle Scholar
  47. He Z, Vingrys A, Armitage J, Bui B (2011) The role of blood pressure in glaucoma. Clin Exp Optom 94(2):133–149CrossRefGoogle Scholar
  48. Hellums J, Nair PK, Huang N, Ohshima N (1996) Simulation of intraluminal gas transport process in the microcirculation. Ann Biomed Eng 24:1–24CrossRefGoogle Scholar
  49. Hickam J, Frayser R (1966) Studies of the retinal circulation in man: observation on vessel diameter, arteriovenous oxygen difference and mean circulation time. Circulation 33:302–316CrossRefGoogle Scholar
  50. Iftimia NV, Hammer DX, Bigelow CE, Rosen DI, Ustun T, Ferrante AA, Vu D, Ferguson RD (2006) Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking. Opt Express 14(8):3377–3388CrossRefGoogle Scholar
  51. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051Google Scholar
  52. Jean-Louis S, Lovasik J, Kergoat H (2005) Systemic hyperoxia and retinal vasomotor responses. Invest Ophthalmol Vis Sci 46:1714–1720CrossRefGoogle Scholar
  53. Kaschke M, Donnerhacke K-H, Rill MS (2013) Optical devices in ophthalmology and optometry: technology, design principles and clinical applications. Wiley, GermanyGoogle Scholar
  54. Kassab GS, Berkley J, Fung Y-CB (1997) Analysis of pigs coronary arterial blood flow with detailed anatomical data. Ann Biomed Eng 25(1):204–217CrossRefGoogle Scholar
  55. Kerr N, Chew S, Danesh-Meyer H (2009) Non-arteritic anterior ischaemic optic neuropathy: a review and update. J Clin Neurosci 16(8):994–1000CrossRefGoogle Scholar
  56. Kida T, Morishita S, Kakurai K, Suzuki H, Oku H, Ikeda T (2014) Treatment of systemic hypertension is important for improvement of macular edema associated with retinal vein occlusion. Clin Ophthalmol 8:724780Google Scholar
  57. Koeppen B, Stanton B (2009) Berne and Levy Physiology. Mosby Elsevier, PhiladelphiaGoogle Scholar
  58. Kolar P (2014) Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data. J Ophthalmol 2014:724780CrossRefGoogle Scholar
  59. Lee J-S, Lee L-P (1992) A density method for determining plasma and red blood cell volume. Ann Biomed Eng 20(2):195–204CrossRefGoogle Scholar
  60. Li Z, Yipintsoi T, Bassingthwaighte JB (1997) Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann Biomed Eng 25(4):604–619CrossRefGoogle Scholar
  61. Linsenmeier R (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88(4):521–542CrossRefGoogle Scholar
  62. Linsenmeier R, Braun R (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197CrossRefGoogle Scholar
  63. Liu D, Wood NB, Witt N, Hughes AD, Thom SA, Xu XY (2009) Computational analysis of oxygen transport in the retinal arterial network. Curr Eye Res 34(11):945–956CrossRefGoogle Scholar
  64. Luksch A, Garhofer G, Imhof A, Polak K, Polska E, Dorner G, Anzenhofer S, Wolzt M, Schmetterer L (2002) Effect of inhalation of different mixtures of \(\text{ O }_2\) and \(\text{ CO }_2\) on retinal blood flow. Br J Ophthalmol 86:1143–1147CrossRefGoogle Scholar
  65. Martinez F, Furió E, Fabià M, Pérez A, Gonzalez-Albert, Rojo-Martinez G, Martinez-Larrad M, Mena-Martin F, Soriguer F, Serrano-Rios M, Chaves F, Martin-Escudero J, Redòn J, Garcia-Fuster M (2014) Risk factors associated with retinal vein occlusion. Int J Clin Pract 68(7):871–881CrossRefGoogle Scholar
  66. Metzger H (1969) Distribution of oxygen partial pressure in a two-dimensional tissue supplied by capillary meshes and concurrent and countercurrent systems. Math Biosci 5(1):143–154CrossRefGoogle Scholar
  67. Michalska-Malecka K, Slowinska-Lozynska L, Romaniuk W (2012) Influence of rheological factors on the development of primary open angle glaucoma. Klin Ocz 114(2):135–137Google Scholar
  68. Moore D, Harris A, WuDunn D, Kheradiya N, Siesky B (2008) Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol 2(4):849–861Google Scholar
  69. Moore J, Ethier C (1997) Oxygen mass transfer calculations in large arteries. J Biomech Eng 119(4):469–475CrossRefGoogle Scholar
  70. Nair P, Huang N, Hellums J, Olson J (1990) A simple model for prediction of oxygen transport rates by flowing blood in large capillaries. Microvasc Res 39(2):203–211CrossRefGoogle Scholar
  71. Nakabayashi S, Nagaoka T, Tani T, Sogawa K, Hein T, Kuo L, Yoshida A (2012) Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors. Exp Eye Res 103:63–70CrossRefGoogle Scholar
  72. Nicolela M, Drance S, Rankin S, Buckley A, Walman B (1996) Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol 121(5):502–510CrossRefGoogle Scholar
  73. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Oxygen mass transfer calculations in large arteries. Ann Biomed Eng 28(11):1281–1299CrossRefGoogle Scholar
  74. Pepple D, Reid H (2009) Alterations in hemorheological determinants and glycated hemoglobin in black diabetic patients with retinopathy. J Natl Med Assoc 101(3):258–260CrossRefGoogle Scholar
  75. Perktold K, Prosi M, Zunino P (2009) Mathematical models of mass transfer in the vascular walls. In: Cardiovascular mathematics. Modeling and simulation of the circulatory system. SpringerGoogle Scholar
  76. Pogue BW, O’Hara JA, Wilmot CM, Paulsena KD, Swartz HM (2001) Estimation of oxygen distribution in RIF-1 tumors by diffusion model-based interpretation of pimonidazole hypoxia and Eppendorf measurements. Radiat Res 155:15–25CrossRefGoogle Scholar
  77. Polyak S (1941) The retina. University of Chicago Press, ChicagoGoogle Scholar
  78. Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17(3):257–321Google Scholar
  79. Pournaras C, Rungger-Brandle E, Riva C, Hardarson S, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27(3):284–330CrossRefGoogle Scholar
  80. Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38:81–101CrossRefGoogle Scholar
  81. Quigley M, Cohen S (1999) A new pressure attenuation index to evaluate retinal circulation: a link to protective factors in diabetic retinopathy. Arch Ophthalmol 117(1):84–89CrossRefGoogle Scholar
  82. Ramm L, Jentsch S, Peters S, Augsten R, Hammer M (2014) Investigation of blood flow regulation and oxygen saturation of the retinal vessels in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 252(11):1803–1810CrossRefGoogle Scholar
  83. Riva C, Grunwald J, Sinclair S (1983) Laser doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24:47–51Google Scholar
  84. Riva C, Pournaras C, Tsacopoulos M (1986) Regulation of local oxygen tension and blood flow in the inner retina during hyperoxia. J Appl Physiol 61:592–598Google Scholar
  85. Riva CE, Grunwald JE, Sinclair SH, Perring BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26(8):1124–1132Google Scholar
  86. Roos WM (2004) Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiol Meas 25(6):1523–1532CrossRefGoogle Scholar
  87. Sacco R, Carichino L, de Falco C, Verri M, Agostini F, Gradinger T (2014) A multiscale thermo-fluid computational model for a two-phase cooling system. Comput Methods Appl Mech Eng 282:239–268MathSciNetCrossRefGoogle Scholar
  88. Satilmis M, Orguel S, Doubler B, Flammer J (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135(5):664669CrossRefGoogle Scholar
  89. Schweitzer D, Hammer M, Kraft J, Thamm E, Konigsdorffer E, Strobel J (1999) In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers. IEEE Trans Biomed Eng 46(12):1454–1465CrossRefGoogle Scholar
  90. Sharan M, Popel A (2002) A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes. J Theor Biol 216:479–500MathSciNetCrossRefGoogle Scholar
  91. Snodderly DM, Weinhaus RS, Choi J (1992) Neural-vascular relationships in central retina of macaque monkeys (macaca fascicularis). J Neurosci 12(4):1169–1193Google Scholar
  92. Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N, Fawzi AA, Linsenmeier RA, Jiao S, Zhang HF (2014) A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep 4:6525CrossRefGoogle Scholar
  93. Stefansson E, Wagner H, Seida M (1988) Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 47:669–678CrossRefGoogle Scholar
  94. Takahashi T, Nagaoka T, Panagida H, Saitoh T, Kamiya A, Hein T, Kuo L, Yoshida A (2009) A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J Biorheol 23(77–86):2999–3013Google Scholar
  95. Talu S, Giovanzana S et al (2012) Image analysis of the normal human retinal vasculature using fractal geometry. HVM Bioflux 4(1):14–18Google Scholar
  96. Tsoukias NM, Goldman D, Vadapalli A, Pittman RN, Popel AS (2007) A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. J Theor Biol 248(4):657–674MathSciNetCrossRefGoogle Scholar
  97. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557CrossRefGoogle Scholar
  98. Weinberger B, Laskin DL, Heck DE, Laskin JD (2002) Oxygen toxicity in premature infants. Toxicol Appl Pharm 181(1):60–67CrossRefGoogle Scholar
  99. Weinreb R, Harris A (2009) Ocular blood flow in glaucoma. World Glaucoma Association Consensus Series. Kugler Publications, AmsterdamGoogle Scholar
  100. Werkmeister RM, Dragostinoff N, Palkovits S, Told R, Boltz A, Leitgeb RA, Gröschl M, Garhöfer G, Schmetterer L (2012) Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(10):6062–6071CrossRefGoogle Scholar
  101. Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomena. Phys Rev Lett 47(19):1400–1403CrossRefGoogle Scholar
  102. Wong T, Mitchell P (2007) The eye in hypertension. Lancet 369(9559):425–435CrossRefGoogle Scholar
  103. Ye GF, Moore TW, Jaron D (1993) Contributions of oxygen dissociation and convection to the behavior of a compartmental oxygen transport model. Microvasc Res 46(1):1–18CrossRefGoogle Scholar
  104. Ye GF, Moore TW, Buerk DG, Jaron D (1994) A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Ann Biomed Eng 22(5):464–479CrossRefGoogle Scholar
  105. Zunino P (2002) Mathematical and numerical modelling of mass transfer in the vascular system. Phd dissertation, EPFLGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Paola Causin
    • 1
  • Giovanna Guidoboni
    • 2
    • 3
  • Francesca Malgaroli
    • 4
  • Riccardo Sacco
    • 4
  • Alon Harris
    • 5
  1. 1.Dipartimento di Matematica “F. Enriques”Università degli Studi di MilanoMilanItaly
  2. 2.Department of Mathematical SciencesIndiana University - Purdue University IndianapolisIndianapolisUSA
  3. 3.Institut de Recherche en Mathématique, Interactions et Applications (IRMIA)University of StrasbourgStrasbourg CedexFrance
  4. 4.Eugene and Marilyn Glick Eye InstituteIndiana University School of MedicineIndianapolisUSA
  5. 5.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly

Personalised recommendations